

SM2 public key cryptographic algorithm based on elliptic curves

Part 1: General

i

Contents

1 Scope... 1

2 Symbols and abbreviations .. 1

3 Fields and elliptic curves .. 2

3.1 Finite fields .. 2

3.1.1 Overview ... 2

3.1.2 Prime field 𝑭𝒒 ... 2

3.1.3 Binary extension field 𝑭𝟐𝒎 .. 3

3.2 Elliptic curves over finite fields .. 3

3.2.1 Elliptic curves over 𝑭𝒑 .. 3

3.2.2 Elliptic curves over 𝑭𝟐𝒎 .. 4

3.2.3 Elliptic curve group ... 4

3.2.4 Scalar multiplication on elliptic curves ... 5

3.2.5 Elliptic curve discrete logarithm problem ... 6

3.2.6 Weak elliptic curves ... 6

4 Data types and conversions ... 6

4.1 Data types ... 6

4.2 Data type conversions .. 7

4.2.1 Conversion of an integer to a byte string .. 7

4.2.2 Conversion of a byte string to an integer .. 7

4.2.3 Conversion of a bit string to a byte string ... 8

4.2.4 Conversion of a byte string to a bit string ... 8

4.2.5 Conversion of a field element to a byte string... 8

4.2.6 Conversion of a byte string to a field element ... 8

4.2.7 Conversion of a field element to an integer ... 9

4.2.8 Conversion of a point to a byte string .. 9

4.2.9 Conversion of a byte string to a point .. 10

5 Elliptic curve system parameters and validation .. 11

5.1 General requirements .. 11

5.2 System parameters and validation of elliptic curves over 𝑭𝒑 11

5.2.1 System parameters of elliptic curves over 𝑭𝒑 .. 11

5.2.2 Validation of system parameters of elliptic curves over 𝑭𝒑 ... 11

5.3 System parameters and validation of elliptic curves over 𝑭𝟐𝒎 12

5.3.1 System parameters of elliptic curves over 𝑭𝟐𝒎 ... 12

5.3.2 Validation of system parameters of elliptic curves over 𝑭𝟐𝒎 12

6 Key pair generation and public key validation .. 13

6.1 Key pair generation .. 13

6.2 Public key validation .. 13

6.2.1 Validation of public keys of elliptic curves over 𝑭𝒑 ... 13

6.2.2 Validation of public keys of elliptic curves over 𝑭𝟐𝒎 ... 14

ii

Annex A (informative) Elliptic curve basics .. 15

A.1 Prime field 𝑭𝒑 ... 15

A.1.1 Definition of prime field 𝑭𝒑 ... 15

A.1.2 Definition of elliptic curve over finite field .. 16

A.1.2.1 Overview ... 16

A.1.2.2 Affine coordinate ... 16

A.1.2.3 Projective coordinate ... 17

A.1.3 Order of elliptic curves over 𝑭𝒑 ... 18

A. 2 Binary extension field 𝑭𝟐𝒎 .. 19

A.2.1 Definition of binary extension field 𝑭𝟐𝒎 .. 19

A.2.1.1 Polynomial basis .. 19

A.2.1.2 Trinomial basis and pentanomial basis .. 20

A.2.1.3 Normal basis .. 23

A.2.1.4 Gaussian normal basis ... 23

A.2.2 Definition of elliptic curve over 𝑭𝟐𝒎 .. 26

A.2.2.1 Overview ... 26

A.2.2.2 Affine coordinate ... 26

A.2.2.3 Projective coordinate ... 27

A.2.3 Order of elliptic curves over 𝑭𝟐𝒎 .. 28

A.3 Elliptic curve scalar multiplication ... 28

A.3.1 Overview ... 28

A.3.2 Implementation of scalar multiplications on elliptic curves .. 28

A3.3 Estimations of the complexity of elliptic curve scalar multiplication 30

A.4 Methods for solving discrete logarithm problems .. 32

A.4.1 Methods for solving elliptic curve discrete logarithm problems 32

A.4.2 Conditions for secure elliptic curves .. 33

A.4.2.1 Condition for resisting the MOV attack ... 33

A.4.2.2 Condition for resisting the anomalous curve attack .. 33

A.4.2.3 Other conditions .. 34

A.5 Compression of points on elliptic curve .. 34

A.5.1 Overview ... 34

A.5.2 Compression and decompression methods for points on elliptic curves over

𝑭𝒑 ... 34

A.5.3 Compression and decompression methods for points on elliptic curves 𝑭𝟐𝒎 34

Annex B (informative) Number theoretic algorithms ... 36

B.1 Finite fields and modular arithmetic ... 36

B.1.1 Exponentiation operation in finite fields.. 36

B.1.2 Inverse operation in finite fields ... 36

B.1.3 Generation of the Lucas sequence ... 37

B.1.4 Solving square root of prime moduli .. 37

iii

B.1.5 Trace function and semi-trace function .. 38

B.1.6 Solving quadratic equations over 𝑭𝟐𝒎 .. 39

B.1.7 Checking the order of an integer modulo a prime .. 40

B.1.8 Computing the order of an integer modulo a prime ... 41

B.1.9 Construction of integers with given order modulo a prime .. 41

B.1.10 Probabilistic primality test .. 41

B.1.11 Approximate primality test ... 42

B.2 Polynomials over finite fields ... 43

B.2.1 Greatest common divisor.. 43

B.2.2 Finding the roots of the irreducible polynomials over 𝑭𝟐 in 𝑭𝟐𝒎 43

B.2.3 Bases conversions ... 44

B.2.4 Checking irreducibility for polynomials over 𝑭𝟐 .. 46

B.3 Elliptic curve algorithms ... 46

B.3.1 Computing the order of elliptic curves .. 46

B.3.2 Finding points on elliptic curves. ... 46

B.3.2.1 Elliptic curves over 𝑭𝒑 .. 46

B.3.2.2 Elliptic curves over 𝑭𝟐𝒎 .. 47

Annex C (informative) Examples of curves .. 48

C.1 General requirements .. 48

C.2 Elliptic curves over 𝑭𝒑 .. 48

C.3 Elliptic curves over 𝑭𝟐𝒎 .. 49

Annex D (informative) Verifiable generation of elliptic curve equation parameters

and validation ... 51

D.1 Verifiable generation of elliptic curve equation parameters.. 51

D.1.1 Verifiable generation of elliptic curve equation parameters over 𝑭𝒑 51

D.1.2 Verifiable generation of elliptic curve equation parameters over 𝑭𝟐𝒎 52

D.2 Validation of elliptic curve equation parameters .. 52

D.2.1 Validation of elliptic curve equation parameters over 𝑭𝒑 .. 52

D.2.2 Validation of elliptic curve equation parameters over 𝑭𝟐𝒎 .. 53

Bibliography..54

1

SM2 public key cryptographic algorithm based on

elliptic curves

Part 1: General

1 Scope

This part of GM/T 0003 specifies fundamental mathematical knowledge and cryptographic

techniques involved in the SM2 public key cryptographic algorithm based on elliptic curves. The

aim is to help implementing the cryptographic mechanisms specified in other parts of this

standard.

This part is applicable to public key cryptographic algorithms based on elliptic curves over prime

fields and binary extension fields.

2 Symbols and abbreviations

𝑎, 𝑏: two elements of a finite field 𝐹𝑞 , which define an elliptic curve 𝐸 over 𝐹𝑞

𝐵: the MOV threshold, which is a positive integer so that solving ECDLP in 𝐹𝑞 is at least as hard

as solving DLP in 𝐹𝑞𝐵

deg⁡(𝑓): the degree of the polynomial 𝑓(𝑥)

𝐸: an elliptic curve over a finite field defined by 𝑎 and 𝑏

𝐸(𝐹𝑞): the set composed of all rational points (including the point at infinity 𝑂) on an elliptic

curve 𝐸 over 𝐹𝑞

ECDLP: the elliptic curve discrete logarithm problem

𝐹𝑞: the prime field with 𝑝 elements

𝐹𝑞: the finite field with 𝑞 elements

𝐹𝑞
∗: the multiplicative group composed of all nonzero elements of 𝐹𝑞

𝐹2𝑚: the binary extension field with 2𝑚 elements

𝐺: a base point of an elliptic curve with prime order

gcd⁡(𝑥, 𝑦): the greatest common divisor of 𝑥 and 𝑦

ℎ: the cofactor which is defined as ℎ = #𝐸(𝐹𝑞)/𝑛, where 𝑛 is the order of the base point 𝐺

𝐿𝑒𝑓𝑡𝑅𝑜𝑡𝑎𝑡𝑒(): the operation of left rotation

𝑙max: the upper bound of divisors of the cofactor ℎ

𝑚: the degree of field extension of 𝐹2𝑚 over 𝐹2

mod⁡ 𝑓(𝑥): the operation of modulo the polynomial 𝑓(𝑥), where if 𝑓(𝑥) is a polynomial over

binary fields, then all arithmetic on the coefficients should modulo 2

mod⁡ 𝑛: the operation of modulo 𝑛, for example, 23⁡ mod⁡ 7 = 2

𝑛: the order of the base point 𝐺, where 𝑛 is a prime factor of #𝐸(𝐹𝑞)

𝑂: the point at infinity on an elliptic curve, which is the zero element of the elliptic curve group

2

𝑃: 𝑃 = (𝑥𝑃 , 𝑦𝑃) is a nonzero point on an elliptic curve whose coordinates 𝑥𝑃 and 𝑦𝑃 satisfy the

elliptic curve equation

𝑃1 + 𝑃2: the addition of two points 𝑃1 and 𝑃2 on the elliptic curve 𝐸

𝑝: a prime number greater than 3

𝑞: number of elements in the finite field 𝐹𝑞

𝑟min: the lower bound of the order of 𝐺

Tr (): the trace function

𝑥𝑃: 𝑥-coordinate of point 𝑃

𝑥−1⁡ mod⁡ 𝑛: the unique integer 𝑦 such that 𝑥 ⋅ 𝑦 ≡ 1⁡ (mod⁡ 𝑛), when 1 ≤ 𝑦 ≤ 𝑛 − 1 and

gcd(𝑥, 𝑛) = 1

𝑥 ∥ 𝑦: the concatenation of 𝑥 and 𝑦, where 𝑥 and 𝑦 are bit strings or byte strings

𝑥 ≡ 𝑦⁡ (mod⁡ 𝑛): 𝑥 and 𝑦 are congruent modulo 𝑛, that is 𝑥⁡ mod⁡ 𝑛 = 𝑦⁡ mod⁡ 𝑛

𝑦𝑃: 𝑦-coordinate of point 𝑃

𝑦̃𝑃: compressed form of 𝑦𝑃

ℤ𝑝: residue ring of integers modulo 𝑝

〈𝐺〉: cyclic group generated by 𝐺

[𝑘]𝑃: the 𝑘 multiples of the point 𝑃, that is [𝑘]𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃⏟
𝑘⁡ 𝑃′𝑠

, where 𝑘 is a positive

integer

[𝑥, 𝑦]: set of integers which are greater than or equal to 𝑥 and less than or equal to 𝑦

⌈𝑥⌉: ceiling function maps to the smallest integer greater than or equal to 𝑥. For example, ⌈7⌉ = 7

and ⌈8.3⌉ = 9

⌊𝑥⌋: floor function maps to the largest integer less than or equal to 𝑥. For example, ⌊7⌋ = 7 and

⌊8.3⌋ = 8

#𝐸(𝐹𝑞): number of points on 𝐸(𝐹𝑞), called the order of 𝐸(𝐹𝑞)

⊕: the bit-wise exclusive-or operator

3 Fields and elliptic curves

3.1 Finite fields

3.1.1 Overview

This clause describes finite field 𝐹𝑞 and representation of its elements, where 𝑞 is an odd prime

number or a power of 2. When 𝑞 is an odd prime number, it requires 𝑞 > 2191. When 𝑞 is a

power of 2 (i.e., 2𝑚), it requires 𝑚 > 192 and 𝑚 is a prime number.

3.1.2 Prime field 𝑭𝒒

When 𝑞 is an odd prime number 𝑝, the elements of the prime field 𝐹𝑝 are represented by

integers 0,1, … , 𝑝 − 1.

a) The additive identity element is the integer 0;

b) The multiplicative identity element is the integer 1;

3

c) The addition operation of field elements is: 𝑎 + 𝑏 =⁡ (𝑎 + 𝑏) mod 𝑝, for 𝑎, 𝑏 ∈ 𝐹𝑝;

d) The multiplication operation of field elements is: 𝑎 ⋅ 𝑏 = ⁡ (𝑎 ⋅ 𝑏)⁡ mod⁡ 𝑝, for 𝑎, 𝑏 ∈ 𝐹𝑝.

3.1.3 Binary extension field 𝑭𝟐𝒎

When 𝑞 is 2𝑚, the binary extension field 𝐹2𝑚 can be seen as the 𝑚-dimensional vector space

over 𝐹2, and its elements can be represented by bit strings of length 𝑚.

The elements of 𝐹2𝑚 can be represented in many ways and the two mostly used ways are of

using polynomial basis (PB) (see Annex A.2.1.1) and normal basis (NB) (see Annex A.2.1.3). The

principle of choosing basis is to make the computation in 𝐹2𝑚 as efficient as possible. This part

does not specify the choice of basis. In the following example, the binary extension field 𝐹2𝑚 is

represented by using polynomial basis.

Suppose 𝑓(𝑥) = 𝑥𝑚 + 𝑓𝑚−1𝑥
𝑚−1 +⋯+ 𝑓2𝑥

2 + 𝑓1𝑥 + 𝑓0 (𝑓𝑖 ∈ 𝐹2, 𝑖 = 0,1, … ,𝑚 − 1) is an

irreducible polynomial over 𝐹2, which shall be a reducible polynomial over 𝐹2𝑚 . 𝐹2𝑚 consists of

all polynomials over 𝐹2 whose degrees are less than 𝑚 . The set of polynomials

{𝑥𝑚−1, 𝑥𝑚−2, … , 𝑥, 1} forms a basis for 𝐹2𝑚 over 𝐹2, which is called polynomial basis. For any

element 𝑎(𝑥) = 𝑎𝑚−1𝑥
𝑚−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 of 𝐹2𝑚 , its coefficients on 𝐹2 constitute a bit

string of length 𝑚, which is denoted by 𝑎 = (𝑎𝑚−1, … , 𝑎2, 𝑎1, 𝑎0).

a) The zero element is represented by bit string with all zeroes;

b) The multiplicative identity element is represented by bit string (00…001);

c) The addition of two field elements is the bit-wise XOR operation of the two bit strings;

d) The multiplication of elements 𝑎 and 𝑏 is defined as follows: Let 𝑎 and 𝑏 correspond to

the polynomials 𝑎(𝑥) and 𝑏(𝑥) over 𝐹2 respectively. Then 𝑎 ⋅ 𝑏 is defined as the bit

string corresponds to the polynomial (𝑎(𝑥)𝑏(𝑥))⁡ mod⁡ 𝑓(𝑥).

3.2 Elliptic curves over finite fields

An elliptic curve over a finite field is composed of a set of points on the elliptic curve. In the affine

coordinate system, a point 𝑃 (which is not the point at infinity) on an elliptic curve is

represented by 𝑃 = (𝑥𝑃 , 𝑦𝑃), where 𝑥𝑃 and 𝑦𝑃 are called the 𝑥-coordinate and 𝑦-coordinate of

𝑃 respectively. In this standard, 𝐹𝑞 is called the base field.

For more details about elliptic curves, please refer to Annexes A.1 and A.2.

In this standard, all elliptic curve points are represented by affine coordinates, unless otherwise

specified.

3.2.1 Elliptic curves over 𝑭𝒑

The equation of elliptic curves over 𝐹𝑝 (where 𝑝 is a prime number greater than 3) is:

4

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑎, 𝑏 ∈ 𝐹𝑝,⁡ and⁡ (4𝑎3 + 27𝑏2)⁡ mod⁡ 𝑝 ≠ 0. (1)

The elliptic curve 𝐸(𝐹𝑝) is defined as:

𝐸(𝐹𝑝) = {(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝐹𝑝⁡ which satisfy⁡ (1)} ∪ {𝑂},

where 𝑂 is the point at infinity.

3.2.2 Elliptic curves over 𝑭𝟐𝒎

The equation defining an elliptic curve defined over 𝐹2𝑚 is as follows:

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏,⁡ ⁡ ⁡ ⁡ 𝑎, 𝑏 ∈ 𝐹2𝑚 , and⁡ 𝑏 ≠ 0. (2)

The elliptic curve 𝐸(𝐹2𝑚) is defined as:

𝐸(𝐹2𝑚) ⁡ = ⁡ {(𝑥, 𝑦)|𝑥, 𝑦 ∈ 𝐹2𝑚 , satisfying⁡ (2)} ∪ {𝑂},

Where O is the point at infinity. The number of points on an elliptic curve 𝐸(𝐹2𝑚) is denoted by

#𝐸(𝐹2𝑚), which is called the order of 𝐸(𝐹2𝑚).

3.2.3 Elliptic curve group

3.2.3.1 Elliptic curve group over 𝑭𝒑

The points on an elliptic curve 𝐸(𝐹𝑝) form an abelian group under the following rules:

a) O + O = O;

b) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑝)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

c) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑃)\{𝑂}, the inverse element of 𝑃 is −𝑃 = (𝑥,−𝑦), and 𝑃 + (−𝑃) = 𝑂;

d) The rule for addition of two points which are not inverse to each other: Suppose 𝑃1 =

(𝑥1, 𝑦1) ∈ 𝐸(𝐹𝑝)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸(𝐹𝑝)\{𝑂}, and 𝑥1 ≠ 𝑥2. Let 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 + 𝑃2,

then

{
𝑥3 = 𝜆

2 − 𝑥1 − 𝑥2,

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1,

where

𝜆 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

;

5

e) The rule of doubling: Suppose 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹𝑝)\{𝑂}, and 𝑥1 ≠ 0. Let 𝑃3 = (𝑥3, 𝑦3) =

𝑃1 + 𝑃1, then

{
𝑥3 = 𝜆

2 − 2𝑥1,

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1,

where

𝜆 =
3𝑥1

2 + 𝑎

2𝑦1
.

3.2.3.2 Elliptic curve group over 𝑭𝟐𝒎

The points on elliptic curve 𝐸(𝑭2𝑚) form an Abelian group under the following rules:

a) O + O = O;

b) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝑭2𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

c) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝑭2𝑚)\{𝑂}, the inverse element of 𝑃 is −𝑃 = (𝑥,−𝑦), and 𝑃 + (−𝑃) = 𝑂;

d) The rule for addition of two points which are not inverse to each other: Suppose 𝑃1 =

(𝑥1, 𝑦1) ∈ 𝐸(𝑭2𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸(𝑭2𝑚)\{𝑂}, and 𝑥1 ≠ 𝑥2 . Let 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 +

𝑃2, then

{
𝑥3 = 𝜆

2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎,

𝑦3 = 𝜆(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1,

where

𝜆 =
𝑦1 + 𝑦2
𝑥1 + 𝑥2

;

e) The rule of doubling: Suppose 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝑭2𝑚)\{𝑂}, and 𝑦1 ≠ 0. Let 𝑃3 = (𝑥3, 𝑦3) =

𝑃1 + 𝑃1, then

{
𝑥3 = 𝜆

2 + 𝜆 + 𝑎,

𝑦3 = 𝑥1
2 + (𝜆 + 1)𝑥3,

where

𝜆 = 𝑥1 +
𝑦1
𝑥1
.

3.2.4 Scalar multiplication on elliptic curves

The scalar multiplication on elliptic curves is the operation of adding a point to itself many times.

Let 𝑘 be a positive integer, and 𝑃 a point on an elliptic curve, 𝑃 scalar multiplication by 𝑘 is

adding 𝑃 to itself 𝑘 times, which is denoted as 𝑄 = [𝑘]𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃⏟
𝑘⁡ times

. [𝑘]𝑃 can be

computed by recursion since [𝑘]𝑃 = [𝑘 − 1]𝑃 + 𝑃.

The output of scalar multiplication may be the point at infinity 𝑂.

6

The scalar multiplication can be implemented more efficiently. Please refer to Annex A.3 for more

details.

3.2.5 Elliptic curve discrete logarithm problem

For an elliptic curve 𝐸(𝐹𝑞), a point 𝑃 ∈ 𝐸(𝐹𝑞) of order 𝑛 and a point 𝑄 ∈ 〈𝑃〉, the elliptic curve

discrete logarithm problem (ECDLP) is to find an integer 𝑙 ∈ [0, 𝑛 − 1] satisfying 𝑄 = [𝑙]𝑃.

ECDLP is closely related to the security of elliptic curve cryptosystems. Thus it is necessary to

choose secure elliptic curves. Please refer to Annex A.4 about how to choose secure elliptic

curves.

3.2.6 Weak elliptic curves

If there are attacking algorithms with computational complexity lower than 𝑛1/2 (𝑛 is the order

of the base point) on an elliptic curve, then the curve is called a weak elliptic curve. This standard

forbids the usage of weak elliptic curves.

The supersingular elliptic curves over 𝐹𝑞 , where the characteristic of 𝐹𝑞 divides 𝑞 + 1 − #𝐸(𝐹𝑞),

and the anomalous curves over 𝐹𝑞 , where #𝐸(𝐹𝑞) = 𝑞, are weak elliptic curves.

4 Data types and conversions

4.1 Data types

In this standard, data types include bit string, byte string, field element, elliptic curve point, and

integer.

Bit string: an ordered sequence of ‘0’s and ‘1’s.

Byte string: an ordered sequence of bytes, where one byte contains 8 bits.

Field element: an element of the finite field 𝐹𝑞 .

Elliptic curve point: a pair of field elements (𝑥𝑃 , 𝑦𝑃), where 𝑥𝑃 and 𝑦𝑃 satisfy the elliptic

curve equation, or the point at infinity 𝑂.

A point can be encoded as a byte string in many forms. A byte 𝑃𝐶 is used to indicate which form

is used. The byte string representation of 𝑂 is a unique zero byte 𝑃𝐶 = 00. A nonzero point 𝑃 =

(𝑥𝑃 , 𝑦𝑃) can be represented as one of the following three byte string forms:

a) Compressed form, 𝑃𝐶 = 02 or 03;

b) Uncompressed form, 𝑃𝐶 = 04;

𝑐) Hybrid form, 𝑃𝐶 = 06 or 07.

NOTE The hybrid form contains the compressed and uncompressed forms. In implementation,

the hybrid form can be converted into the compressed form or uncompressed forms.

7

Implementation of the compressed and hybrid forms is optional in this standard. Please refer to

Annex A.5 for the details of the compressed form.

4.2 Data type conversions

Figure 1 indicates the conversion relations between the data types. The subclauses for the

corresponding conversion methods are given by the marks along the arrows.

4.2.1 Conversion of an integer to a byte string

Input: a non-negative integer 𝑥 and the target length of the byte string 𝑘, where 28𝑘 > 𝑥.

Output: a byte string 𝑀 of 𝑘 bytes long.

a) Let 𝑀𝑘−1, 𝑀𝑘−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right.

b) The bytes of 𝑀 satisfy

𝑥 =∑28𝑖𝑀𝑖

𝑘−1

𝑖=0

.

4.2.2 Conversion of a byte string to an integer

Input: a byte string 𝑀 of 𝑘 bytes long.

Output: an integer 𝑥.

a) Let 𝑀𝑘−1, 𝑀𝑘−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right.

4.2.9 4.2.8

4.2.5 4.2.6

Field element

Byte string Integer Bit string

Elliptic curve
point

4.2.1

7.2.2

4.2.4

4.2.3

4.2.7

8

b) Convert 𝑀 to an integer 𝑥 as follows:

𝑥 =∑28𝑖𝑀𝑖

𝑘−1

𝑖=0

.

4.2.3 Conversion of a bit string to a byte string

Input: a bit string 𝑠 of 𝑚 bits long.

Output: a byte string 𝑀 of 𝑘 bytes long, where 𝑘 = ⌈𝑚/8⌉.

a) Let 𝑠𝑚−1, 𝑠𝑚−2, … , 𝑠0 be the individual bits of 𝑠 from left to right.

b) Let 𝑀𝑘−1, 𝑀𝑘−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right. Then

𝑀𝑖 = 𝑠8𝑖+7𝑠8𝑖+6…𝑠8𝑖+1𝑠8𝑖 , where 0 ≤ 𝑖 < 𝑘 , and when 8𝑖 + 𝑗 ≥ 𝑚 and 0 < 𝑗 ≤ 7 , then

𝑠8𝑖+𝑗 = 0.

4.2.4 Conversion of a byte string to a bit string

Input: a byte string 𝑀 of 𝑘 bytes long.

Output: a bit string 𝑠 of 𝑚 bits long, where 𝑚 = 8𝑘.

a) Let 𝑀𝑘−1, 𝑀𝑘−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right.

b) Let 𝑠𝑚−1, 𝑠𝑚−2, … , 𝑠0 be the individual bits of 𝑠 from left to right. Then 𝑠𝑖 is the (𝑖 − 8𝑗 +

1)th bit of 𝑀𝑗 from the right, where 𝑗 = ⌊𝑖/8⌋.

4.2.5 Conversion of a field element to a byte string

Input: an element 𝛼 of 𝐹𝑞 .

Output: a byte string 𝑆 of 𝑙 = ⌈𝑡/8⌉ bytes long, where 𝑡 = ⌈log2 𝑞⌉.

a) If 𝑞 is an odd prime number, then 𝛼 is an integer in [0, 𝑞 − 1]. Convert 𝛼 to a byte string

𝑆 of 𝑙 bytes long as specified in 4.2.1.

b) If 𝑞 = 2𝑚, then 𝛼 is a bit string of 𝑚 bits long. Convert 𝛼 to a byte string 𝑆 of 𝑙 bytes

long as specified in 4.2.3.

4.2.6 Conversion of a byte string to a field element

Input: type of the base field 𝐹𝑞 , and a byte string 𝑆 of 𝑙 = ⌈𝑡/8⌉ bytes long, where 𝑡 = ⌈log2 𝑞⌉.

Output: an element 𝛼 of 𝐹𝑞 .

a) If 𝑞 is an odd prime number, convert 𝑆 to an integer 𝛼 as specified in 4.2.2. If 𝛼 ∉

[0, 𝑞 − 1], return error.

9

b) If 𝑞 = 2𝑚, convert 𝑆 to a bit string 𝛼 of 𝑚 bits long as specified in 4.2.4.

4.2.7 Conversion of a field element to an integer

Input: an element 𝛼 of 𝐹𝑞 .

Output: an integer 𝑥.

a) If 𝑞 is an odd prime number, then 𝑥 = 𝛼. (No need to convert).

b) If 𝑞 = 2𝑚, 𝛼 is a bit string of 𝑚 bits long. Let 𝑠𝑚−1, 𝑠𝑚−2, … , 𝑠0 be the individual bits of 𝛼

from left to right. Then convert 𝛼 to an integer 𝑥 as follows:

𝑥 = ∑ 2𝑖𝑠𝑖

𝑚−1

𝑖=0

.

4.2.8 Conversion of a point to a byte string

Input: a point 𝑃 = (𝑥𝑃 , 𝑦𝑃) of an elliptic curve, where 𝑃 ≠ 𝑂.

Output: a byte string 𝑆. If the uncompressed or hybrid forms are used, the length of the output

byte string is 2𝑙 + 1 bytes. If the compressed form is used, the length of the output byte string is

𝑙 + 1 bytes, where 𝑙 = ⌈(log2 𝑞)/8⌉.

a) Convert the field element 𝑥𝑃 to a byte string 𝑋1 of 𝑙 bytes long as specified in 4.2.5.

b) If the compressed form is used, then

 1) Compute a bit 𝑦̃𝑃 . (See Annex A.5.)

 2) If 𝑦̃𝑃 = 0, 𝑃𝐶 = 02, and if 𝑦̃𝑃 = 1, 𝑃𝐶 = 03.

 3) Output the byte string 𝑆 = 𝑃𝐶 ∥ 𝑋1.

c) If the uncompressed form is used, then

 1) Convert the field element 𝑦𝑃 to a byte string 𝑌1 of 𝑙 bytes long as specified in 4.2.5.

 2) Let 𝑃𝐶 = 04.

 3) Output the byte string 𝑆 = 𝑃𝐶 ∥ 𝑋1 ∥ 𝑌1 .

d) If the hybrid form is used, then

 1) Convert the field element 𝑦𝑃 to a byte string 𝑌1 of 𝑙 bytes long as specified in 4.2.5.

 2) Compute a bit 𝑦̃𝑃 . (See Annex A.5.)

10

 3) If 𝑦̃𝑃 = 0, 𝑃𝐶 = 06, and if 𝑦̃𝑃 = 1, 𝑃𝐶 = 07.

 4) Output the byte string 𝑆 = 𝑃𝐶 ∥ 𝑋1 ∥ 𝑌1 .

4.2.9 Conversion of a byte string to a point

Input: field elements 𝑎, 𝑏 which define the elliptic curve over 𝐹𝑞 and a byte string 𝑆. If the

uncompressed or hybrid forms are used, the length of 𝑆 is 2𝑙 + 1 bytes. If the compressed form

is used, the length of 𝑆 is 𝑙 + 1 bytes, where 𝑙 = ⌈(log2 𝑞)/8⌉.

Output: a point 𝑃 = (𝑥𝑃 , 𝑦𝑃) on the elliptic curve, and 𝑃 ≠ 𝑂.

a) If the compressed form is used, 𝑆 = 𝑃𝐶 ∥ 𝑋1; If the uncompressed or hybrid forms are used,

𝑆 = 𝑃𝐶 ∥ 𝑋1 ∥ 𝑌1 , where 𝑃𝐶 is one byte, and 𝑋1 and 𝑌1 are byte strings of 𝑙 bytes long.

b) Convert the byte string 𝑋1 to a field element 𝑥𝑃 as specified in 4.2.6.

c) If the compressed form is used, then

 c.1) Check if 𝑃𝐶 = 02 or 𝑃𝐶 = 03. If this is not the case, then return error.

 c.2) If 𝑃𝐶 = 02, let 𝑦̃𝑃 = 0; If 𝑃𝐶 = 03, let 𝑦̃𝑃 = 1.

 c.3) Convert (𝑥𝑃 , 𝑦̃𝑃) to a point (𝑥𝑃 , 𝑦𝑃) on the elliptic curve. (See Annex A.5.)

d) If the uncompressed form is used, then

 d.1) Check if 𝑃𝐶 = 04. If this is not the case, then return error.

 d.2) Convert the byte string 𝑌1 to a field element 𝑦𝑃 as specified in 4.2.6.

e) If the hybrid form is used, then

 e.1) Check if 𝑃𝐶 = 06 or 𝑃𝐶 = 07. If this is not the case, then return error.

 e.2) Execute one of the following steps:

e.2.1) Convert the byte string 𝑌1 to a field element 𝑦𝑃 as specified in 4.2.6.

e.2.2) If 𝑃𝐶 = 06, let 𝑦̃𝑃 = 0, else if 𝑃𝐶 = 07, let 𝑦̃𝑃 = 1. Convert (𝑥𝑃 , 𝑦̃𝑃) to a

point (𝑥𝑃 , 𝑦𝑃) on the elliptic curve. (See Annex A.5.)

f) If 𝑞 is an odd prime number, check if 𝑦𝑃
2 ≡ 𝑥𝑃

3 + 𝑎𝑥𝑃 + 𝑏⁡ (mod⁡ 𝑞). If this is not the case,

then return error. If 𝑞 = 2𝑚, check if 𝑦𝑃
2 + 𝑥𝑃𝑦𝑃 = 𝑥𝑃

3 + 𝑎𝑥𝑃
2 + 𝑏 in 𝐹2𝑚 . If this is not the case,

then return error.

g) Output 𝑃 = (𝑥𝑃 , 𝑦𝑃).

11

5 Elliptic curve system parameters and validation

5.1 General requirements

The elliptic curve system parameters can be public. The security of the system does not rely on

the secrecy of these parameters. This standard does not specify how to generate these system

parameters, but specifies how to validate them. The methods of computing the order of elliptic

curves and choosing the base point can be referred to Annex B.3, and the generation method of

curve parameters can be referred to Annex D.

The elliptic curve system parameters can be classified into two groups as specified in the base

fields:

a) Elliptic curve system parameters over 𝐹𝑝, if the base field is 𝐹𝑝 (𝑝 is a prime number

greater than 3);

b) Elliptic curve system parameters over 𝐹2𝑚 , if the base field is 𝐹2𝑚 .

5.2 System parameters and validation of elliptic curves over 𝑭𝒑

5.2.1 System parameters of elliptic curves over 𝑭𝒑

The system parameters of an elliptic curve over 𝐹𝑝 include:

a) The field size 𝑞 = 𝑝, where 𝑝 is a prime number greater than 3;

b) (Optional) A bit string SEED of length at least 192 bits (if the elliptic curve is generated as

specified in Annex D);

c) Two elements 𝑎 and 𝑏 belong to 𝐹𝑝, which define the elliptic curve equation E: 𝑦2 = 𝑥3 +

𝑎𝑥 + 𝑏;

d) The base point 𝐺 = (𝑥𝐺 , 𝑦𝐺) ∈ 𝐸(𝐹𝑝), 𝐺 ≠ 𝑂;

e) The base point order 𝑛 satisfying 𝑛 > 2191 and 𝑛 > 4𝑝1/2;

f) (Optional) the cofactor ℎ = #𝐸(𝐹𝑝)/𝑛.

5.2.2 Validation of system parameters of elliptic curves over 𝑭𝒑

The following conditions shall be validated by the producer of the elliptic curve system

parameters. The user of the elliptic curve system may selectively validate these conditions.

Input: the elliptic curve system parameters over 𝑭𝑝.

Output: "VALID" if the system parameters are valid; otherwise "INVALID".

a) Verify that 𝑞 = 𝑝 is an odd prime; (See Annex B.1.10.)

12

b) Verify that 𝑎, 𝑏, 𝑥𝐺 , 𝑦𝐺 are integers in [0, 𝑝 − 1];

c) If the elliptic curve is randomly generated in a verifiable method as specified in Annex D,

validate that the length of SEED is at least 192 bits and 𝑎, 𝑏 are derived from SEED.

d) Verify that 4𝑎3 + 27𝑏2⁡ mod⁡ 𝑝 ≠ 0;

e) Verify that 𝑦𝐺
2 ≡ 𝑥𝐺

3 + 𝑎𝑥𝐺 + 𝑏⁡ (𝑚𝑜𝑑⁡ 𝑝);

f) Verify that 𝑛 is prime, and 𝑛 > 2191 and 𝑛 > 4𝑝1/2; (See Annex B.1.10.)

g) Verify that [𝑛]𝐺 = 𝑂; (See Annex A.3.)

h) (Optional) Compute ℎ′ = ⌊
(𝑝1/2+1)

2

𝑛
⌋, and validate that ℎ = ℎ′;

i) Verify that the conditions resisting against the MOV attack and the anomalous curve attack

hold; (See Annexes A.4.2.1 and A.4.2.2.)

j) If any validation above is failed, output "INVALID", otherwise output "VALID".

5.3 System parameters and validation of elliptic curves over 𝑭𝟐𝒎

5.3.1 System parameters of elliptic curves over 𝑭𝟐𝒎

The system parameters of an elliptic curve over 𝐹2𝑚 include:

a) The field size 𝑞 = 2𝑚, the identifier indicating the representation of the elements in 𝐹2𝑚

(trinomial basis (TPB), pentanomial basis (PPB) or Gaussian normal basis (GNB)), and an

irreducible polynomial over 𝐹2 of degree 𝑚 (if TPB or PPB is used);

b) (Optional) A bit string SEED of length at least 192 bits (if the elliptic curve is generated as

specified in Annex D);

c) Two elements 𝑎 and 𝑏 of 𝐹2𝑚 , which define the elliptic curve equation E: 𝑦2 + 𝑥𝑦 = 𝑥3 +

𝑎𝑥2 + 𝑏;

d) The base point 𝐺 = (𝑥𝐺 , 𝑦𝐺) ∈ 𝐸(𝐹2𝑚), 𝐺 ≠ 𝑂;

e) The base point order 𝑛 satisfying 𝑛 > 2191 and 𝑛 > 22+𝑚/2;

f) (Optional) the cofactor ℎ = #𝐸(𝐹2𝑚)/𝑛.

5.3.2 Validation of system parameters of elliptic curves over 𝑭𝟐𝒎

The following conditions shall be validated by the producer of the elliptic curve system

parameters. The user of the elliptic curve system may selectively validate these conditions.

13

Input: the elliptic curve system parameters over 𝐹2𝑚 .

Output: "VALID" if the system parameters are valid; otherwise "INVALID".

a) For given 𝑚, validate that 𝑞 = 2𝑚; If TPB is used, validate that the irreducible polynomial is

a trinomial (see Table A.3); If PPB is used, validate that there exists no irreducible degree 𝑚

trinomials and the given irreducible polynomial is pentanomial (see Table A.4); If GNB is

used, validate that 𝑚 is not divisible by 8;

b) Verify that 𝑎, 𝑏, 𝑥𝐺 , 𝑦𝐺 are bit strings of length 𝑚;

c) If the elliptic curve is randomly generated in a verifiable method as specified in Annex D,

validate that the length of SEED is at least 192 bits and 𝑎, 𝑏 both are derived from SEED.

d) Verify that 𝑏 ≠ 0;

e) Verify that 𝑦𝐺
2 + 𝑥𝐺𝑦𝐺 ≡ 𝑥𝐺

3 + 𝑎𝑥𝐺
2 + 𝑏⁡ in 𝐹2𝑚;

f) Verify that 𝑛 is prime, and 𝑛 > 2191 and 𝑛 > 22+𝑚/2; (See Annex B.1.10.)

g) Verify that [𝑛]𝐺 = 𝑂; (See Annex A.3.2.)

h) (Optional) Compute ℎ′ = ⌊
(2𝑚/2+1)

2

𝑛
⌋, and validate that ℎ = ℎ′;

i) Verify that the conditions resisting against the MOV attack are hold; (See Annex A.4.2.1.)

j) If any validation above is failed, output "INVALID", otherwise output "VALID".

6 Key pair generation and public key validation

6.1 Key pair generation

Input: a set of valid elliptic curve system parameters over 𝐹𝑞 .

Output: a key pair (𝑑, 𝑃) related to the elliptic curve system parameters.

a) Generate an integer 𝑑 ∈ [1, 𝑛 − 2] using a random number generator;

b) Let 𝐺 be the base point, then compute 𝑃 = (𝑥𝑃 , 𝑦𝑃) = [𝑑]𝐺; (See Annex A.3.2.)

c) The key pair is (𝑑, 𝑃), in which 𝑑 is the private key and 𝑃 is the public key.

6.2 Public key validation

6.2.1 Validation of public keys of elliptic curves over 𝑭𝒑

Input: a set of valid elliptic curve system parameters over 𝐹𝑝 and a related public key 𝑃.

14

Output: "VALID" if the public key is valid, otherwise "INVALID".

a) Verify that 𝑃 is not the point at infinity 𝑂;

b) Verify that the coordinates 𝑥𝑃 and 𝑦𝑃 of the public key are elements belonging to 𝐹𝑝;

c) Verify that 𝑦𝑃
2 ≡ 𝑥𝑃

3 + 𝑎𝑥𝑃 + 𝑏⁡ (mod⁡ 𝑝);

d) Verify that [𝑛]𝑃 = 𝑂;

e) If all validations are passed, output "VALID", otherwise output "INVALID".

6.2.2 Validation of public keys of elliptic curves over 𝑭𝟐𝒎

Input: a set of valid elliptic curve system parameters over 𝐹2𝑚 and a related public key 𝑃.

Output: "VALID" if the public key is valid, otherwise "INVALID".

a) Verify that 𝑃 is not the point at infinity 𝑂;

b) Verify that the coordinates 𝑥𝑃 and 𝑦𝑃 of the public key are elements belonging to 𝐹2𝑚;

c) Verify that 𝑦𝑃
2 + 𝑥𝑃𝑦𝑃 ≡ 𝑥𝑃

3 + 𝑎𝑥𝑃
2 + 𝑏 in 𝐹2𝑚;

d) Verify that [𝑛]𝑃 = 𝑂;

e) If all validations are passed, output "VALID", otherwise output "INVALID".

NOTE The validation of public key is optional.

15

Annex A

(informative)

Elliptic curve basics

A.1 Prime field 𝑭𝒑

A.1.1 Definition of prime field 𝑭𝒑

Suppose 𝑝 is prime. Then 𝐹𝑝 consists of the 𝑝 elements in set {0,1,2, . . . , 𝑝 − 1}, which is called

a prime field. The additive identity is 0, while the multiplicative identity is 1. The elements of 𝐹𝑝

have the following operation rules:

-- Addition: if 𝑎, 𝑏 ∈ 𝐹𝑝, then 𝑎 + 𝑏 = 𝑟, where 𝑟 = (𝑎 + 𝑏)⁡ mod⁡ 𝑝, 𝑟 ∈ [0, 𝑝 − 1].

-- Multiplication: if 𝑎, 𝑏 ∈ 𝐹𝑝, then⁡ 𝑎 ⋅ 𝑏 = 𝑠, where 𝑠 = (𝑎 · 𝑏)⁡ mod⁡ 𝑝, 𝑠 ∈ [0, 𝑝 − 1].

Let 𝐹𝑝
∗ be the multiplicative group consist of all nonzero elements of 𝐹𝑝 . Since 𝐹𝑝

∗ is a

multiplicative group, there is at least one element 𝑔 in 𝐹𝑝, satisfying that any nonzero element

in 𝐹𝑝 can be represented by the power of 𝑔. 𝑔 is called the generator (primitive element) of 𝐹𝑝
∗,

and 𝐹𝑝
∗ = {𝑔𝑖 ⁡ |⁡ 0 ≤ 𝑖 ≤ 𝑝 − 2} . Let 𝑎 = 𝑔𝑖 ∈ 𝐹𝑝

∗ , and 0 ≤ 𝑖 ≤ 𝑝 − 2 , then the multiplicative

inverse of 𝑎 is: 𝑎−1 = 𝑔𝑝−1−𝑖.

Example 1: the prime field 𝐹2 = {0,1}

The addition table is given in Table A.1, and the multiplication table is given in Table A.2:

Table A.1

+ 0 1

0 0 1

1 1 0

Table A.2

. 0 1

0 0 0

1 0 1

Example 2: the prime field 𝐹19 = {0, 1, 2, … , 18}.

Example of addition in 𝐹19: 10, 14 ∈ 𝐹19, 10 + 14 = 24, 24⁡ mod⁡ 19 = 5, then 10 + 14 =

5.

16

Example of multiplication in 𝐹19: 7, 8 ∈ 𝐹19, 7 × 8 = 56, 56⁡ mod⁡ 19 = 18, then 7 ⋅ 8 =

18.

13 is a generator of 𝐹19
∗ , then the elements of 𝐹19

∗ can be represented by the powers of 13:

130 = 1, 131 = 13, 132 = 17, 133 = 12, 134 = 4, 135 = 14, 136 = 11, 137 = ⁡ 10, 138 =

⁡ 16, 139 = 18,1310 = 6, 1311 = 2, 1312 = 7, 1313 = 15, 1314 = 5, 1315 = 8, 1316 = 9, 1317 =

3, 1318 = 1.

A.1.2 Definition of elliptic curve over finite field

A.1.2.1 Overview

The elliptic curves over finite field are commonly represented in two manners, i.e., the affine

coordinate and the projective coordinate.

A.1.2.2 Affine coordinate

Suppose 𝑝 is a prime number greater than 3 and the elliptic curve equation over 𝐹𝑝 in the

affine coordinate system has the simplified form as 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, where 𝑎, 𝑏 ∈ 𝐹𝑝, satisfying

(4𝑎3 + 27𝑏2)⁡ mod⁡ 𝑝 ≠ 0 . The set of points on the elliptic curve is denoted by 𝐸(𝐹𝑝) =

{(𝑥, 𝑦)⁡ |⁡ 𝑥, 𝑦 ∈ 𝐹𝑝, 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {𝑂}, where 𝑂 is the point at infinity.

The points of 𝐸(𝐹𝑝𝑚) form an abelian group as specified in the following addition rules:

a) 𝑂⁡ + ⁡ 𝑂⁡ = ⁡ 𝑂;

b) ∀𝑃⁡ = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

𝑐) ∀𝑃⁡ = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, the inverse of 𝑃 is –𝑃 = (𝑥, −𝑦), 𝑃 + (−𝑃) = 𝑂;

d) 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, and 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 + 𝑃2 ≠ 0,

then

{
𝑥3 = 𝜆

2 − 𝑥1 − 𝑥2,

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1 ,

where

λ =

{

𝑦2 − 𝑦1
𝑥2 − 𝑥1

,⁡ ⁡ ⁡ if⁡ 𝑥1 ≠ 𝑥2,

3𝑥1
2 + 𝑎

2𝑦1
,⁡ ⁡ ⁡ if⁡ 𝑥1 = 𝑥2, and⁡ 𝑃2 ≠ −𝑃1 .

Example 3: an elliptic curve over 𝑭𝟏𝟗

The equation defined over 𝐹19: 𝑦2 = 𝑥3 + 𝑥 + 1, where 𝑎 = 1, 𝑏 = 1. The points on the curve

are:

(0,1), (0,18), (2,7), (2,12), (5,6), (5,13), (7,3), (7,16), (9,6), (9,13), (10,2), (10,17), (13,8),

(13,11), (14,2), (14,17), (15,3), (15,16), (16,3), (16,16).

17

There are 21 points (including 𝑂) on 𝐸(𝐹19).

a) Let 𝑃1 = (10, 2), 𝑃2 = (9, 6). Then 𝑃3 = 𝑃1 + 𝑃2 = (𝑥3, 𝑦3), where:

λ =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
6 − 2

9 − 10
=
4

−1
= −4 ≡ 15⁡ (mod⁡ 19),

𝑥3 = 152⁡ − 10⁡ − 9 = 225 − 10 − 9 = 16 − 10 − 9 = ⁡ −3 ≡ 16⁡ (mod⁡ 19),

𝑦3 = 15 × (10⁡ – ⁡ 16)– ⁡ 2 = 15 × (– 6)– ⁡ 2 ≡ 3⁡ (mod⁡ 19).

Thus, 𝑃3 = (16, 3).

b) Let 𝑃1 ⁡ = ⁡ (10, 2). Then [2]𝑃1 = (𝑥3, 𝑦3), where:

λ =
3𝑥1

2 + 𝑎

2𝑦1
=
3 × 102 + 1

2 × 2
=
3 × 5 + 1

4
=
16

4
= 4⁡ (mod⁡ 19),

𝑥3 = 42⁡ − 10⁡ − 10 = ⁡ −4 ≡ 15(mod⁡ 19),

𝑦3 = 4 × (10⁡ – ⁡ 15)– ⁡ 2 =– 22 ≡ 16(mod⁡ 19).

Thus, [2]𝑃1 = (15, 16).

A.1.2.3 Projective coordinate

A.1.2.3.1 Standard projective coordinate system

Suppose 𝑝 is a prime number greater than 3 and the elliptic curve equation over 𝐹𝑝 in the

standard projective coordinate system has the simplified form as 𝑦2𝑧 = 𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3, where

𝑎, 𝑏 ∈ 𝐹𝑝, satisfying 4𝑎3 + 27𝑏2 ≠ 0. The set of points on the elliptic curve is denoted by 𝐸(𝐹𝑝) =

{(𝑥, 𝑦, 𝑧)⁡ |⁡ 𝑥, 𝑦, 𝑧 ∈ 𝐹𝑝, 𝑦
2𝑧 = 𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3}. For (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2), if there is a 𝑢 ∈

𝐹𝑝 (𝑢 ≠ 0) such that 𝑥1 = 𝑢𝑥2, 𝑦1 = 𝑢𝑦2, and 𝑧1 = 𝑢𝑧2, then these two triples are equivalent,

and they represent the same point.

If 𝑧 ≠ 0, let 𝑋 = 𝑥/𝑧, 𝑌 = 𝑦/𝑧, then the standard projective coordinate can be converted to the

affine coordinate as 𝑌2 = 𝑋3 + 𝑎𝑋 + 𝑏.

If 𝑧 = 0, then the point (0,1,0) corresponds to the point at infinity 𝑂 of the affine coordinate

system.

In the standard projective coordinate system, the addition of points on 𝐸(𝐹𝑝) is defined as

follows:

a) 𝑂⁡ + ⁡ 𝑂⁡ = ⁡ 𝑂;

b) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

𝑐) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝)\{𝑂}, the inverse of 𝑃 is –𝑃 = (𝑢𝑥, −𝑢𝑦, 𝑢𝑧), 𝑢 ∈ 𝐹𝑝⁡ (𝑢 ≠

0),⁡ and 𝑃 + (−𝑃) = 𝑂;

d) Let 𝑃1 = (𝑥1, 𝑦1, 𝑧1) ∈ 𝐸(𝐹𝑝)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ 𝐸(𝐹𝑝)\{𝑂}, and 𝑃3 = 𝑃1 + 𝑃2 =

(𝑥3, 𝑦3 , 𝑧3) ≠ 𝑂.

If 𝑃1 ≠ 𝑃2, then

18

𝜆1 = 𝑥1𝑧2, 𝜆2 = 𝑥2𝑧1, 𝜆3 = 𝜆1 − 𝜆2, 𝜆4 = 𝑦1𝑧2, 𝜆5 = 𝑦2𝑧1, 𝜆6 = 𝜆4 − 𝜆5, 𝜆7 = 𝜆1 + 𝜆2, 𝜆8 =

𝑧1𝑧2, 𝜆9 = 𝜆3
2 , 𝜆10 = 𝜆3𝜆9, 𝜆11 = 𝜆8𝜆6

2 − 𝜆7𝜆9, 𝑥3 = 𝜆3𝜆11, 𝑦3 = 𝜆6(𝜆9𝜆1 − 𝜆11) − 𝜆4𝜆10, 𝑧3 =

𝜆10𝜆8.

If 𝑃1 = 𝑃2, then

𝜆1 = 3𝑥1
2 + 𝑎𝑧1

2, 𝜆2 = 2𝑦1𝑧1, 𝜆3 = 𝑦1
2, 𝜆4 = 𝜆3𝑥1𝑧1, 𝜆5 = 𝜆2

2 , 𝜆6 = 𝜆1
2 − 8𝜆4, 𝑥3 = 𝜆2𝜆6, 𝑦3 =

𝜆1(4𝜆4 − 𝜆6) − 2𝜆5𝜆3, 𝑧3 = 𝜆2𝜆5.

A.1.2.3.2 Jacobian projective coordinate system

The elliptic curve equation over 𝐹𝑝 in the Jacobian projective coordinate system has the

simplified form as 𝑦2 = 𝑥3 + 𝑎𝑥𝑧4 + 𝑏𝑧6, where 𝑎, 𝑏 ∈ 𝐹𝑝, satisfying 4𝑎3 + 27𝑏2 ≠ 0. The set of

points on the elliptic curve is denoted by 𝐸(𝐹𝑝) = {(𝑥, 𝑦, 𝑧)⁡ |⁡ 𝑥, 𝑦, 𝑧 ∈ 𝐹𝑝, 𝑦
2 = 𝑥3 + 𝑎𝑥𝑧4 + 𝑏𝑧6}.

For (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2 , 𝑧2), if there is a 𝑢 ∈ 𝐹𝑝 (𝑢 ≠ 0) such that 𝑥1 = 𝑢
2𝑥2, 𝑦1 = 𝑢

3𝑦2, and

𝑧1 = 𝑢𝑧2, then these two triples are equivalent, and they represent the same point.

If 𝑧 ≠ 0, let 𝑋 = 𝑥/𝑧2, 𝑌 = 𝑦/𝑧3, then the Jacobian projective coordinate can be converted to

the affine coordinate as 𝑌2 = 𝑋3 + 𝑎𝑋 + 𝑏.

If 𝑧 = 0, then the point (1,1,0) corresponds to the point at infinity 𝑂 of the affine coordinate

system.

In the Jacobian projective coordinate system, the addition of points on 𝐸(𝐹𝑝) is defined as

follows:

a) 𝑂⁡ + ⁡ 𝑂⁡ = ⁡ 𝑂;

b) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

𝑐) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝)\{𝑂}, the inverse element of 𝑃 is –𝑃 = (𝑢2𝑥, −𝑢3𝑦, 𝑢𝑧), 𝑢 ∈

𝐹𝑝⁡ (𝑢 ≠ 0),⁡ and 𝑃 + (−𝑃) = 𝑂;

d) Let 𝑃1 = (𝑥1, 𝑦1, 𝑧1) ∈ 𝐸(𝐹𝑝)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ 𝐸(𝐹𝑝)\{𝑂}, and 𝑃3 = 𝑃1 + 𝑃2 =

(𝑥3, 𝑦3 , 𝑧3) ≠ 𝑂.

If 𝑃1 ≠ 𝑃2, then

𝜆1 = 𝑥1𝑧2
2, 𝜆2 = 𝑥2𝑧1

2, 𝜆3 = 𝜆1 − 𝜆2, 𝜆4 = 𝑦1𝑧2
3, 𝜆5 = 𝑦2𝑧1

3, 𝜆6 = 𝜆4 − 𝜆5, 𝜆7 = 𝜆1 + 𝜆2, 𝜆8 =

𝜆4 + 𝜆5, 𝜆9 = 𝜆7𝜆3
2 , 𝑥3 = 𝜆6

2 − 𝜆9, 𝜆10 = 𝜆9
2 − 2𝑥3, 𝑦3 = (𝜆10𝜆6 − 𝜆8𝜆3

3)/2, 𝑧3 = 𝑧1𝑧2𝜆3.

If 𝑃1 = 𝑃2, then

𝜆1 = 3𝑥1
2 + 𝑎𝑧1

4, 𝜆2 = 4𝑥1𝑦1
2, 𝜆3 = 8𝑦1

4, 𝑥3 = 𝜆1
2 − 2𝜆2, 𝑦3 = 𝜆1(𝜆2 − 𝑥3) − 𝜆3, 𝑧3 = 2𝑦1𝑧1.

A.1.3 Order of elliptic curves over 𝑭𝒑

The order of an elliptic curve over 𝐹𝑝 (𝑝 is a prime greater than 3) is the number of elements in

the set 𝐸(𝐹𝑝), denoted by #𝐸(𝐹𝑝). According to Hasse's theorem, 𝑝 + 1 − 2𝑝
1

2 ≤ #𝐸(𝐹𝑝) ⁡ ≤ 𝑝 +

1 + 2𝑝1/2.

In the prime field 𝐹𝑝 , if the order of a curve #𝐸(𝐹𝑝) = 𝑝 + 1, then this curve is called as

supersingular; otherwise, it is non-supersingular.

19

A. 2 Binary extension field 𝑭𝟐𝒎

A.2.1 Definition of binary extension field 𝑭𝟐𝒎

The finite field 𝐹2𝑚 consisting of 2𝑚 elements is of the 𝑚 times extension of field 𝐹2, called

the degree 𝑚 binary extension field. 𝐹2𝑚 can be viewed as the 𝑚-dimensional vector space

over 𝐹2. If there exist 𝑚 elements 𝛼0, 𝛼1, … , 𝛼𝑚−1, such that ∀𝛼 ∈ 𝐹2𝑚 , 𝛼 can be uniquely

represented by 𝛼 = 𝑎𝑚−1𝛼𝑚−1+⋯+ 𝑎0𝛼0 + 𝑎1𝛼1 (𝑎𝑖 ∈ 𝐹2), then {𝛼0, 𝛼1,⋯ , 𝛼𝑚−1} is called a

basis of 𝐹2𝑚 over 𝐹2 . There are many choices for basis. While the multiplication rules of

elements in the field are different under different bases, the addition rules of elements in the field

are consistent under different bases.

A.2.1.1 Polynomial basis

Suppose the irreducible polynomial 𝑓(𝑥) over 𝐹2 is represented as 𝑓(𝑥) = 𝑥𝑚 + 𝑓𝑚−1𝑥
𝑚−1 +

⋯+ 𝑓2𝑥
2 + 𝑓1𝑥 + 𝑓0 (𝑓𝑖 ∈ 𝐹2, 𝑖 = 0,1, … ,𝑚 − 1), which is a reducible polynomial over the binary

extension field 𝐹2𝑚 . The elements of 𝐹2𝑚 can be represented by all polynomials with degree

less than 𝑚, that is, 𝐹2𝑚 ⁡ = {𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 +··· +𝑎1𝑥 + 𝑎0⁡ |⁡ 𝑎𝑖 ∈ 𝐹2, 𝑖 = 0,1, . . . , 𝑚 −

1}. The set of polynomials {𝑥𝑚−1, 𝑥𝑚−2, … , 𝑥, 1} is a basis of 𝐹2𝑚 as a vector space over 𝐹2,

which is called a polynomial basis.

The field element 𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 +··· +𝑎1𝑥 + 𝑎0 could be represented by bit string

(𝑎𝑚−1𝑎𝑚−2 ⁡ … 𝑎1𝑎0) in terms of the polynomial basis. So 𝐹2𝑚 = {(𝑎𝑚−1𝑎𝑚−2…𝑎1𝑎0)⁡ |⁡ 𝑎𝑖 ∈

𝐹2, 𝑖⁡ = ⁡ 0,1, … ,𝑚 − 1}.

The multiplicative identity is represented by (0, … ,0,1), and the zero element is represented by

(0, … ,0,0). The addition and multiplication of the field elements are defined as follows.

Addition. ∀(𝑎𝑚−1𝑎𝑚−2…𝑎1𝑎0), (𝑏𝑚−1𝑏𝑚−2…𝑏1𝑏0) ∈ 𝐹2𝑚 , then (𝑎𝑚−1𝑎𝑚−2…𝑎1𝑎0) +

⁡ (𝑏𝑚−1𝑏𝑚−2…𝑏1𝑏0) = (𝑐𝑚−1𝑐𝑚−2…𝑐1𝑐0) where 𝑐𝑖 = 𝑎𝑖⨁𝑏𝑖 , 𝑖 = 0,1, … ,𝑚 − 1. That is, addition

is implemented by component-wise exclusive-or.

Multiplication. ∀(𝑎𝑚−1𝑎𝑚−2…𝑎1𝑎0), (𝑏𝑚−1𝑏𝑚−2…𝑏1𝑏0) ∈ 𝐹2𝑚 , then (𝑎𝑚−1𝑎𝑚−2…𝑎1𝑎0) ⋅

(𝑏𝑚−1𝑏𝑚−2…𝑏1𝑏0) = (𝑟𝑚−1𝑟𝑚−2…𝑟1𝑟0) , where the polynomial 𝑟𝑚−1𝑥
𝑚−1 + 𝑟𝑚−2𝑥

𝑚−2 +···

+𝑟1𝑥 + 𝑟0 is the remainder of (𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 +··· +𝑎1𝑥 + 𝑎0) ⋅ (𝑏𝑚−1𝑥
𝑚−1 +

𝑏𝑚−2𝑥
𝑚−2 +··· +𝑏1𝑥 + 𝑏0) modulo 𝑓(𝑥) in 𝐹2[𝑥].

Note that 𝐹2𝑚 contains exactly 2𝑚 elements. Let 𝐹2𝑚
∗ be the multiplicative group which

consists of all nonzero elements in 𝐹2𝑚 . Since 𝐹2𝑚
∗ is a cyclic group, there exists at least one

element 𝑔 in 𝐹2𝑚 such that any nonzero element of 𝐹2𝑚
∗ can be represented by powers of 𝑔.

𝑔 is called the generator (or primitive element) of 𝐹2𝑚
∗ , and 𝐹2𝑚

∗ = {𝑔𝑖 ⁡ |⁡ 0 ≤ 𝑖 ≤ 2𝑚 − 2}. Let

𝑎 = 𝑔𝑖 ∈ 𝐹2𝑚
∗ , where 0 ≤ 𝑖 ≤ 2𝑚 − 2. Then the multiplicative inverse of 𝑎 is 𝑎−1 = 𝑔2

𝑚−1−𝑖 .

Example 4: the polynomial basis representation of 𝐹25 .

20

Let 𝑓(𝑥) = 𝑥5 + 𝑥2 + 1 be an irreducible polynomial over 𝐹2. Then the elements of 𝐹25

are:

(00000), (00001), (00010), (00011), (00100), (00101), (00110),

(00111), (01000), (01001), (01010), (01011), (01100), (01101),

(01110), (01111), (10000), (10001), (10010), (10011), (10100),

(10101), (10110), (10111), (11000), (11001), (11010), (11011),

(11100), (11101), (11110), (11111).

Addition: (11011) + (10011) = (01000).

Multiplication: (11011) · (10011) = (00100)

(𝑥4 + 𝑥3 + 𝑥 + 1) ⋅ (𝑥4 + 𝑥 + 1) = 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 𝑥2 + 1

= (𝑥5 + 𝑥2 + 1) ⋅ (𝑥3 + 𝑥2 + 1) + 𝑥2

= 𝑥2⁡ (mod⁡ 𝑓(𝑥))

That is, 𝑥2 is the reminder of (𝑥4 + 𝑥3 + 𝑥 + 1) ⋅ (𝑥4 + 𝑥 + 1) modulo 𝑓(𝑥).

The multiplicative identity is (00001), and 𝛼 = 𝑥 is a generator of 𝐹25
∗ . Then the powers of

𝛼 are

𝛼0 = (00001), 𝛼1 = (00010), 𝛼2 = (00100), 𝛼3 = (01000), 𝛼4 = (10000), 𝛼5 = (00101),

𝛼6 = (01010), 𝛼7 = (10100), 𝛼8 = (01101), 𝛼9 = (11010), 𝛼10 = (10001), 𝛼11 = (00111),

𝛼12 = (01110), 𝛼13 = (11100), 𝛼14 = (11101), 𝛼15 = (11111), 𝛼16 = (11011),

𝛼17 = (10011), 𝛼18 = (00011), 𝛼19 = (00110), 𝛼20 = (01100), 𝛼21 = (11000),

𝛼22 = (10101), 𝛼23 = (01111), 𝛼24 = (11110), 𝛼25 = (11001), 𝛼26 = (10111),

𝛼27 = (01011), 𝛼28 = (10110), 𝛼29 = (01001), 𝛼30 = (10010), 𝛼31 = (00001)

A.2.1.2 Trinomial basis and pentanomial basis

A.2.1.2.1 Overview

Trinomial basis (TPB) and pentanomial basis (PPB) are of special polynomial bases.

A.2.1.2.2 Trinomial basis

Trinomials over 𝐹2 are polynomials of the form 𝑥𝑚 + 𝑥𝑘 + 1, where 1 ≤ 𝑘 ≤ 𝑚 − 1.

A trinomial basis representation of 𝐹2𝑚 is determined by an 𝑚-degree irreducible trinomial

over 𝐹2. Trinomials only exist for some specified values of 𝑚. The Example 4 above is a

trinomial representation of 𝐹25 .

Table A.3 gives all the values of 𝑚, for which there exist irreducible trinomials, for 192 ≤ 𝑚 ≤

512. For each such value of 𝑚, it also gives the minimum values of 𝑘 such that there exist

trinomials over 𝐹2 of the form 𝑥𝑚 + 𝑥𝑘 + 1.

Table A.3

 m, k m, k m, k m, k m, k m, k

193, 15 194, 87 196, 3 198, 9 199, 34 201, 14

21

202, 55 204, 27 207, 43 209, 6 210, 7 212, 105

214, 73 215, 23 217, 45 218, 11 220, 7 223, 33

225, 32 228, 113 231, 26 233, 74 234, 31 236, 5

238, 73 239, 36 241, 70 242, 95 244, 111 247, 82

249, 35 250, 103 252, 15 253, 46 255, 52 257, 12

258, 71 260, 15 263, 93 265, 42 266, 47 268, 25

270, 53 271, 58 273, 23 274, 67 276, 63 278, 5

279, 5 281, 93 282, 35 284, 53 286, 69 287, 71

289, 21 292, 37 294, 33 295, 48 297, 5 300, 5

302, 41 303, 1 305, 102 308, 15 310, 93 313, 79

314, 15 316, 63 318, 45 319, 36 321, 31 322, 67

324, 51 327, 34 329, 50 330, 99 332, 89 333, 2

337, 55 340, 45 342, 125 343, 75 345, 22 346, 63

348, 103 350, 53 351, 34 353, 69 354, 99 358, 57

359, 68 362, 63 364, 9 366, 29 367, 21 369, 91

370, 139 372, 111 375, 16 377, 41 378, 43 380, 47

382, 81 383, 90 385, 6 386, 83 388, 159 390, 9

391, 28 393, 7 394, 135 396, 25 399, 26 401, 152

402, 171 404, 65 406, 141 407, 71 409, 87 412, 147

414, 13 415, 102 417, 107 418, 199 420, 7 422, 149

423, 25 425, 12 426, 63 428, 105 431, 120 433, 33

436, 165 438, 65 439, 49 441, 7 444, 81 446, 105

447, 73 449, 134 450, 47 455, 38 457, 16 458, 203

460, 19 462, 73 463, 93 465, 31 468, 27 470, 9

471, 1 473, 200 474, 191 476, 9 478, 121 479, 104

481, 138 484, 105 486, 81 487, 94 489, 83 490, 219

492, 7 494, 17 495, 76 497, 78 498, 155 500, 27

503, 3 505, 156 506, 23 508, 9 510, 69 511, 10

A.2.1.2.3 Pentanomial basis

Pentanomials over 𝐹2 are polynomials of the form 𝑥𝑚 + 𝑥𝑘3 + 𝑥𝑘2 + 𝑥𝑘1 + 1, where 1 ≤ 𝑘1 <

𝑘2 < 𝑘3 ≤ 𝑚 − 1.

A pentanomial basis representation of 𝐹2𝑚 is determined by an 𝑚 -degree irreducible

pentanomial over 𝐹2. Pentanomials exist for all values 𝑚 satisfying 4 ≤ 𝑚 ≤ 512.

Table A.4 gives all the values of 𝑚, for which there exist no irreducible trinomials but there exist

pentanomials, for 192 ≤ 𝑚 ≤ 512. For each such value 𝑚, it also gives the values of (𝑘1, 𝑘2, 𝑘3)

satisfying:

a) 𝑥𝑚 + 𝑥𝑘3 + 𝑥𝑘2 + 𝑥𝑘1 + 1 is irreducible over 𝐹2.

b) 𝑘1 is as small as possible.

22

c) For fixed 𝑘1, 𝑘2 is chosen as small as possible.

d) For fixed 𝑘1, 𝑘2, 𝑘3 is chosen as small as possible.

Table A.4

m (k1,k2,k3) m (k1,k2,k3) m (k1,k2,k3) m (k1,k2,k3)

192 (1, 2, 7) 195 (1, 2, 37) 197 (1, 2, 21) 200 (1, 2, 81)

203 (1, 2, 45) 205 (1, 2, 21) 206 (1, 2, 63) 208 (1, 2, 83)

211 (1, 2,165) 213 (1, 2, 62) 216 (1, 2,107) 219 (1, 2, 65)

221 (1, 2, 18) 222 (1, 2, 73) 224 (1, 2,159) 226 (1, 2, 30)

227 (1, 2, 21) 229 (1, 2, 21) 230 (1, 2, 13) 232 (1, 2, 23)

235 (1, 2, 45) 237 (1, 2,104) 240 (1, 3, 49) 243 (1, 2, 17)

245 (1, 2, 37) 246 (1, 2, 11) 248 (1, 2,243) 251 (1, 2, 45)

254 (1, 2, 7) 256 (1, 2,155) 259 1, 2, 254) 261 (1, 2, 74)

262 (1, 2, 207) 264 (1, 2, 169) 267 (1, 2, 29) 269 (1, 2, 117)

272 (1, 3, 56) 275 (1, 2, 28) 277 (1, 2, 33) 280 (1, 2, 113)

283 (1, 2, 200) 285 (1, 2, 77) 288 (1, 2, 191) 290 (1, 2, 70)

291 (1, 2, 76) 293 (1, 3, 154) 296 (1, 2, 123) 298 (1, 2, 78)

299 (1, 2, 21) 301 (1, 2, 26) 304 (1, 2, 11) 306 (1, 2, 106)

307 (1, 2, 93) 309 (1, 2, 26) 311 (1, 3, 155) 312 (1, 2, 83)

315 (1, 2, 142) 317 (1, 3, 68) 320 (1, 2, 7) 323 (1, 2, 21)

325 (1, 2, 53) 326 (1, 2, 67) 328 (1, 2, 51) 331 (1, 2, 134)

334 (1, 2, 5) 335 (1, 2, 250) 336 (1, 2, 77) 338 (1, 2, 112)

339 (1, 2, 26) 341 (1, 2, 57) 344 (1, 2, 7) 347 (1, 2, 96)

349 (1, 2, 186) 352 (1, 2, 263) 355 (1, 2, 138) 356 (1, 2, 69)

357 (1, 2, 28) 360 (1, 2, 49) 361 (1, 2, 44) 363 (1, 2, 38)

365 (1, 2, 109) 368 (1, 2, 85) 371 (1, 2, 156) 373 (1, 3, 172)

374 (1, 2, 109) 376 (1, 2, 77) 379 (1, 2, 222) 381 (1, 2, 5)

384 (1, 2, 299) 387 (1, 2, 146) 389 (1, 2, 159) 392 (1, 2, 145)

395 (1, 2, 333) 397 (1, 2, 125) 398 (1, 3, 23) 400 (1, 2, 245)

403 (1, 2, 80) 405 (1, 2, 38) 408 (1, 2, 323) 410 (1, 2, 16)

411 (1, 2, 50) 413 (1, 2, 33) 416 (1, 3, 76) 419 (1, 2, 129)

421 (1, 2, 81) 424 (1, 2, 177) 427 (1, 2, 245) 429 (1, 2, 14)

430 (1, 2, 263) 432 (1, 2, 103) 434 (1, 2, 64) 435 (1, 2, 166)

437 (1, 2, 6) 440 (1, 2, 37) 442 (1, 2, 32) 443 (1, 2, 57)

445 (1, 2, 225) 448 (1, 3, 83) 451 (1, 2, 33) 452 (1, 2, 10)

453 (1, 2, 88) 454 (1, 2, 195) 456 (1, 2, 275) 459 (1, 2, 332)

461 (1, 2, 247) 464 (1, 2, 310) 466 (1, 2, 78) 467 (1, 2, 210)

469 (1, 2, 149) 472 (1, 2, 33) 475 (1, 2, 68) 477 (1, 2, 121)

480 (1, 2, 149) 482 (1, 2, 13) 483 (1, 2, 352) 485 (1, 2, 70)

488 (1, 2, 123) 491 (1, 2, 270) 493 (1, 2, 171) 496 (1, 3, 52)

23

499 (1, 2, 174) 501 (1, 2, 332) 502 (1, 2, 99) 504 (1, 3, 148)

507 (1, 2, 26) 509 (1, 2, 94) 512 (1, 2, 51)

A.2.1.2.3 The rules for choosing polynomial basis

The polynomial basis representation of 𝐹2𝑚 depends on the choice of reduced polynomials:

a) If there exist 𝑚-degree irreducible trinomials over 𝐹2, then the reduced polynomial 𝑓(𝑥) is

chosen to be a trinomial 𝑥𝑚 + 𝑥𝑘 + 1. For better implementation, 𝑘 is chosen as small as

possible. (These polynomials are given in Table A.3.)

b) If there doesn't exist 𝑚-degree irreducible trinomials over 𝐹2, then the reduced polynomial

𝑓(𝑥) is chosen to be a pentanomial 𝑥𝑚 + 𝑥𝑘3 + 𝑥𝑘2 + 𝑥𝑘1 + 1. For better implementation,

𝑘1, 𝑘2, 𝑘3 are chosen as small as possible. (These polynomials are given in Table A.4.)

A.2.1.3 Normal basis

A normal basis for 𝐹2𝑚 over 𝐹2 is a basis of the form {𝛽, 𝛽2, 𝛽2
2
… , 𝛽2

𝑚−1
}, where 𝛽 ∈ 𝐹2𝑚.

There always exist such kind of basis. For all 𝛼 ∈ 𝐹2𝑚 , 𝛼 = 𝑎0𝛽
20 + 𝑎1𝛽

21 +⋯+ 𝑎𝑚−1𝛽
2𝑚−1 ,

where 𝑎𝑖 ∈ 𝐹2, 𝑖 = 0,1, … ,𝑚 − 1. Denote 𝛼 = (𝑎0𝑎1…𝑎𝑚−1). The field element 𝛼 is represented

by a bit string of length 𝑚 . The field 𝐹2𝑚 = {(𝑎0𝑎1…𝑎𝑚−1)|𝑎𝑖 ∈ 𝐹2, 𝑖 = 0,1, … ,𝑚 − 1} , the

multiplicative identity is (11…1), and the zero is (00…0).

NOTE The order of bits in normal basis is different from that of in polynomial basis. (See

A.2.1.1.)

A.2.1.4 Gaussian normal basis

From A.2.1.3, a normal basis for 𝐹2𝑚 over 𝐹2 is a basis of the form {𝛽, 𝛽2, 𝛽2
2
… , 𝛽2

𝑚−1
}, where

𝛽 ∈ 𝐹2𝑚 . One of the advantages of the normal basis is the efficient computation of the squaring of

elements, while a basis called Gaussian normal basis is used for the ordinary multiplications.

A Gaussian normal basis for 𝐹2𝑚 exists when 𝑚 is not divisible by 8. Type T of a Gaussian

normal basis is a positive integer measuring the complexity of multiplication. In general,

multiplication is more efficient as T smaller. For given 𝑚 and T, 𝐹2𝑚 has at most one Gaussian

normal basis of type T. In all normal bases, there exist most efficient algorithms of multiplication

on Gaussian normal bases of type 1 and type 2. They are called optimal normal bases.

An element 𝑎 of 𝐹2𝑚 is represented by a bit string (𝑎𝑚−1𝑎𝑚−2…𝑎1𝑎0) of length 𝑚 under

Gaussian normal bases:

a) The multiplicative identity is represented by 𝑚 bits of 1.

b) The zero is represented by 𝑚 bits of 0;

c) Addition is done by exclusive-or of two bit strings;

d) Multiplication is described in A.2.1.4.3.

24

A.2.1.4.1 The principle for choosing normal basis

The principle for choosing a normal basis for 𝐹2𝑚 is to choose the Gaussian normal basis with

least type number if it exists. The type of Gaussian normal bases for 𝐹2𝑚 , for prime 𝑚 in

[192,512] are listed in Table A.5.

Table A.5

m Type m Type m Type m Type m Type m Type

193 4 197 18 199 4 211 10 223 12 227 24

229 12 233 2 239 2 241 6 251 2 257 6

263 6 269 8 271 6 277 4 281 2 283 6

293 2 307 4 311 6 313 6 317 26 331 6

337 10 347 6 349 10 353 14 359 2 367 6

373 4 379 12 383 12 389 24 397 6 401 8

409 4 419 2 421 10 431 2 433 4 439 10

443 2 449 8 457 30 461 6 463 12 467 6

479 8 487 4 491 2 499 4 503 6 509 2

A.2.4.1.2 Gaussian normal bases test

Given type T, the existence of Gaussian normal bases with type T for 𝐹2𝑚 (𝑚 > 1 and 𝑚 is not

divisible by 8) can be tested using the following algorithm.

Input: 𝑚, T

Output: "YES", if there exists a Gaussian normal basis for 𝐹2𝑚 of type T; "NO", otherwise.

a) Compute 𝑝 = 𝑇𝑚 + 1;

b) If 𝑝 is not a prime number, then output "NO" and terminate.

c) Compute the order 𝑘 of 2 modulo 𝑝. (See B.1.8)

d) Compute 𝑢 = 𝑇𝑚/𝑘;

e) Compute 𝑑 = gcd⁡(𝑢,𝑚);

f) If 𝑑 = 1, then output "YES"; otherwise, output "NO".

A.2.1.4.3 Multiplication under Gaussian normal bases

For any given Gaussian normal basis, multiplication of two elements consists of three parts:

pre-computation, computation of the first term 𝑐0 of the multiplication, and computation of the

multiplication via 𝑐0.

Pre-computation:

25

Input: 𝑚, 𝑇 such that there exist a Gaussian normal basis B for 𝐹2𝑚 of type T.

Output: a sequence 𝑓(1), 𝑓(2), … , 𝑓(𝑝 − 1) with respect to B.

a) Compute 𝑝 = 𝑇𝑚 + 1;

b) Generate an integer 𝑢 whose order modulo 𝑝 is 𝑇. (See B.1.9.)

c) Compute a sequence 𝑓(1), 𝑓(2), … , 𝑓(𝑝 − 1):

 c.1) Set 𝑤 = 1;

 c.2) For 𝑗 = 0 to 𝑇 − 1 do:

 c.2.1) Set 𝑛 = 𝑤;

 c.2.2) For 𝑖 = 0 to 𝑚− 1 do:

 c.2.2.1) Set 𝑓(𝑛) = 𝑖;

 c.2.2.2) Set 𝑛 = 2𝑛⁡ 𝑚𝑜𝑑⁡ 𝑝;

 c.2.2.3) Set 𝑤 = 𝑢𝑤⁡ 𝑚𝑜𝑑⁡ 𝑝;

d) Output 𝑓(1), 𝑓(2), … , 𝑓(𝑝 − 1).

Given two elements 𝒂, 𝒃 represented under the Gaussian normal basis B, compute the

first term 𝒄𝟎 of their multiplication (Denote 𝒄𝟎 = 𝑭(𝒂, 𝒃)):

Input: 𝑚, 𝑇, 𝑎, 𝑏.

Output: the first term 𝑐0.

a) Obtain 𝑓(1), 𝑓(2), … , 𝑓(𝑝 − 1) from pre-computation;

b) If 𝑇 is even, then 𝐽 = 0; otherwise 𝐽 = ∑ (𝑎𝑘−1𝑏𝑚
2
+𝑘−1

+ 𝑎𝑚
2
+𝑘−1

𝑏𝑘−1)
𝑚
𝑘=1 ;

c) Output the formula 𝑐0 = 𝐽 + ∑ 𝑎𝑓(𝑘+1)𝑏𝑓(𝑝−𝑘)
𝑝−2
𝑘=1 .

Compute the multiplication of 𝒂, 𝒃 via the formula of 𝒄𝟎:

Input: 𝑚, 𝑇, 𝑎, 𝑏.

Output: (𝑐0𝑐1…𝑐𝑚−1) = (𝑎0𝑎1…𝑎𝑚−1) × (𝑏0𝑏1…𝑏𝑚−1).

a) Set (𝑢0𝑢1…𝑢𝑚−1) = (𝑎0𝑎1…𝑎𝑚−1);

26

b) Set (𝑣0𝑣1…𝑣𝑚−1) = (𝑏0𝑏1…𝑏𝑚−1);

c) For 𝑘 = 0 to 𝑚 − 1 do:

 c.1) Compute 𝑐𝑘 = 𝐹(𝑢, 𝑣);

 c.2) Set 𝑢 = LeftRotate(𝑢), 𝑣 = LeftRotate(𝑣), where LeftRotate() is the left rotation by 1

operation;

d) Output 𝑐 = (𝑐0𝑐1…𝑐𝑚−1).

A.2.2 Definition of elliptic curve over 𝑭𝟐𝒎

A.2.2.1 Overview

There are two common representations for the elliptic curves over 𝐹2𝑚: the affine coordinate

and the projective coordinate.

A.2.2.2 Affine coordinate

The elliptic curve equation over 𝐹2𝑚 in the affine coordinate system can be simplified as 𝑦2 +

𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 , where 𝑎, 𝑏 ∈ 𝐹2𝑚 and 𝑏 ≠ 0. The set of points on the elliptic curve is

denoted by 𝐸(𝐹2𝑚) = {(𝑥, 𝑦)⁡ |⁡ 𝑥, 𝑦 ∈ 𝐹2𝑚 , 𝑦
2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏} ∪ {𝑂}, where 𝑂 is the point

at infinity.

The points on 𝐸(𝐹2𝑚) form an abelian group as specified in the following addition rules:

a) 𝑂⁡ + ⁡ 𝑂⁡ = ⁡ 𝑂;

b) ∀𝑃⁡ = (𝑥, 𝑦) ∈ 𝐸(𝐹2𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

𝑐) ∀𝑃⁡ = (𝑥, 𝑦) ∈ 𝐸(𝐹2𝑚)\{𝑂}, the inverse of 𝑃 is –𝑃 = (𝑥, 𝑥 + 𝑦), 𝑃 + (−𝑃) = 𝑂;

d) 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹2𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸(𝐹2𝑚)\{𝑂}, and 𝑥1 ≠ 𝑥2 . Let 𝑃3 = (𝑥3, 𝑦3) =

𝑃1 + 𝑃2 ≠ 0, then

{
𝑥3 = 𝜆

2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎,

𝑦3 = 𝜆(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1 ,

where λ =
𝑦1+𝑦2

𝑥1+𝑥2
.

e) Doubling:

Suppose 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹2𝑚)\{𝑂}, and 𝑥1 ≠ 0, 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 + 𝑃1 , then:

{
𝑥3 = 𝜆

2 + 𝜆 + 𝑎,

𝑦3 = 𝑥1
2 + (𝜆 + 1)𝑥3,

where λ = 𝑥1 +
𝑦1

𝑥1
.

27

A.2.2.3 Projective coordinate

A.2.2.3.1 Standard projective coordinate system

The elliptic curve equation over 𝐹2𝑚 in the standard projective coordinate system can be

simplified as 𝑦2𝑧 + 𝑥𝑦𝑧 = 𝑥3 + 𝑎𝑥2𝑧 + 𝑏𝑧3, where 𝑎, 𝑏 ∈ 𝐹2𝑚 , and 𝑏 ≠ 0. The set of points on

the elliptic curve is denoted by 𝐸(𝐹2𝑚) = {(𝑥, 𝑦, 𝑧)⁡ |⁡ 𝑥, 𝑦, 𝑧 ∈ 𝐹2𝑚 , 𝑦
2𝑧 + 𝑥𝑦𝑧 = 𝑥3 + 𝑎𝑥2𝑧 +

𝑏𝑧3}. For (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2 , 𝑧2), if there is a 𝑢 ∈ 𝐹2𝑚 (𝑢 ≠ 0) such that 𝑥1 = 𝑢𝑥2, 𝑦1 =

𝑢𝑦2, and 𝑧1 = 𝑢𝑧2, then these two triples are equivalent, and they represent the same point.

If 𝑧 ≠ 0, let 𝑋 = 𝑥/𝑧, 𝑌 = 𝑦/𝑧, then the standard projective coordinate can be converted to the

affine coordinate: 𝑌2 + 𝑋𝑌 = 𝑋3 + 𝑎𝑋2 + 𝑏.

If 𝑧 = 0, then the point (0,1,0) corresponds to the point at infinity 𝑂 of the affine coordinate

system.

In the standard projective coordinate system, the addition of points on 𝐸(𝐹2𝑚) is defined as

follows:

a) 𝑂⁡ + ⁡ 𝑂⁡ = ⁡ 𝑂;

b) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹2𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

𝑐) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹2𝑚)\{𝑂}, the inverse of 𝑃 is – 𝑃 = (𝑢𝑥, 𝑢(𝑥 + 𝑦), 𝑢𝑧), 𝑢 ∈ 𝐹2𝑚 ⁡ (𝑢 ≠

0),⁡ and 𝑃 + (−𝑃) = 𝑂;

d) Let 𝑃1 = (𝑥1, 𝑦1, 𝑧1) ∈ 𝐸(𝐹2𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ 𝐸(𝐹2𝑚)\{𝑂}, and 𝑃3 = 𝑃1 + 𝑃2 =

(𝑥3, 𝑦3 , 𝑧3) ≠ 𝑂.

If 𝑃1 ≠ 𝑃2, then

𝜆1 = 𝑥1𝑧2, 𝜆2 = 𝑥2𝑧1, 𝜆3 = 𝜆1 + 𝜆2, 𝜆4 = 𝑦1𝑧2, 𝜆5 = 𝑦2𝑧1, 𝜆6 = 𝜆4 + 𝜆5, 𝜆7 = 𝑧1𝑧2, 𝜆8 = 𝜆3
2 ,

𝜆9 = 𝜆8𝜆7, 𝜆10 = 𝜆3𝜆8, 𝜆11 = 𝜆6𝜆7(𝜆6 + 𝜆3) + 𝜆10 + 𝑎𝜆9, 𝑥3 = 𝜆3𝜆11, 𝑦3 = 𝜆6(𝜆1𝜆8 + 𝜆11) +

𝑥3 + 𝜆10𝜆4, 𝑧3 = 𝜆3𝜆9.

If 𝑃1 = 𝑃2, then

𝜆1 = 𝑥1𝑧1, 𝜆2 = 𝑥1
2, 𝜆3 = 𝜆2 + 𝑦1𝑧1, 𝜆4 = 𝜆1

2, 𝜆5 = 𝜆3(𝜆1 + 𝜆3) + 𝑎𝜆4, 𝑥3 = 𝜆1𝜆5, 𝑦3 = 𝜆2
2𝜆1 +

𝜆3𝜆5 + 𝑥3, 𝑧3 = 𝜆1𝜆4.

A.2.2.3.2 Jacobian projective coordinate system

The elliptic curve equation over 𝐹2𝑚 in the Jacobian projective coordinate system can be

simplified as 𝑦2 + 𝑥𝑦𝑧 = 𝑥3 + 𝑎𝑥2𝑧2 + 𝑏𝑧6, where 𝑎, 𝑏 ∈ 𝐹2𝑚, and 𝑏 ≠ 0. The set of points on

the elliptic curve is denoted by 𝐸(𝐹2𝑚) = {(𝑥, 𝑦, 𝑧)⁡ |⁡ 𝑥, 𝑦, 𝑧 ∈ 𝐹2𝑚 , 𝑦
2 + 𝑥𝑦𝑧 = 𝑥3 + 𝑎𝑥2𝑧2 +

𝑏𝑧6}. For (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2 , 𝑧2), if there is a 𝑢 ∈ 𝐹2𝑚 (𝑢 ≠ 0) such that 𝑥1 = 𝑢
2𝑥2, 𝑦1 =

𝑢3𝑦2, and 𝑧1 = 𝑢𝑧2, then these two triples are equivalent, and they represent the same point.

If 𝑧 ≠ 0, let 𝑋 = 𝑥/𝑧2, 𝑌 = 𝑦/𝑧3, then the Jacobian projective coordinate can be converted to

the affine coordinate as 𝑌2 + 𝑋𝑌 = 𝑋3 + 𝑎𝑋2 + 𝑏.

If 𝑧 = 0, then the point (1,1,0) corresponds to the point at infinity 𝑂 of the affine coordinate

system.

28

In the Jacobian projective coordinate system, the addition of points on 𝐸(𝐹2𝑚) is defined as

follows:

a) 𝑂⁡ + ⁡ 𝑂⁡ = ⁡ 𝑂;

b) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹2𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃;

𝑐) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹2𝑚)\{𝑂}, the inverse element of 𝑃 is – 𝑃 = (𝑢2𝑥, 𝑢2𝑥 + 𝑢3𝑦, 𝑢𝑧), 𝑢 ∈

𝐹2𝑚 ⁡ (𝑢 ≠ 0),⁡ and 𝑃 + (−𝑃) = 𝑂;

d) Let 𝑃1 = (𝑥1, 𝑦1, 𝑧1) ∈ 𝐸(𝐹2𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ 𝐸(𝐹2𝑚)\{𝑂}, and 𝑃3 = 𝑃1 + 𝑃2 =

(𝑥3, 𝑦3 , 𝑧3) ≠ 𝑂.

If 𝑃1 ≠ 𝑃2, then

𝜆1 = 𝑥1𝑧2
2, 𝜆2 = 𝑥2𝑧1

2, 𝜆3 = 𝜆1 + 𝜆2, 𝜆4 = 𝑦1𝑧2
3, 𝜆5 = 𝑦2𝑧1

3, 𝜆6 = 𝜆4 + 𝜆5, 𝜆7 = 𝑧1𝜆3, 𝜆8 =

𝜆6𝑥2 + 𝜆7𝑦2, 𝑧3 = 𝜆7𝑧2, 𝜆9 = 𝜆6 + 𝜆3, 𝑥3 = 𝑎𝑧3
3 + 𝜆6𝜆9 + 𝜆3

3 , 𝑦3 = 𝜆9𝑥3 + 𝜆8𝜆7
2 .

If 𝑃1 = 𝑃2, then

𝑧3 = 𝑥1𝑧1
2, 𝑥3 = (𝑥1 + 𝑏𝑧1

2)4, 𝜆 = 𝑧3 + 𝑥1
2 + 𝑦1𝑧1, 𝑦3 = 𝑥1

4𝑧3 + 𝜆𝑥3.

A.2.3 Order of elliptic curves over 𝑭𝟐𝒎

The order of an elliptic curve over 𝐹2𝑚 is the number of elements in the set 𝐸(𝐹2𝑚), denoted by

#𝐸(𝐹2𝑚). According to Hasse's theorem, 2𝑚 + 1 − 21+𝑚/2 ≤ #𝐸(𝐹2𝑚) ⁡ ≤ 2
𝑚 + 1 + 21+𝑚/2.

A.3 Elliptic curve scalar multiplication

A.3.1 Overview

Suppose 𝑃 is a point on elliptic curve 𝐸 of order 𝑁 and 𝑘 is a positive integer. Then 𝑃

multiplied by 𝑘 is 𝑄:

𝑄 = [𝑘]𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃⏟
𝑘⁡ 𝑃′s

.

A.3.2 Implementation of scalar multiplications on elliptic curves

There are several ways to implement the elliptic curve scalar multiplication. Three of them are

given below, in which it is supposed 1 ≤ 𝑘 < 𝑁.

Algorithm 1: binary expansion method

Input: a point 𝑃, an 𝑙-bit integer 𝑘 = ∑
𝑙−1

𝑗=0
𝑘𝑗2

𝑗 , 𝑘𝑗 ∈ {0, 1}.

Output: 𝑄 = [𝑘]𝑃.

a) Set 𝑄 = 𝑂;

b) For 𝑗 = 𝑙 − 1 to 0, do:

b.1) 𝑄 = [2]𝑄;

29

b.2) If 𝑘𝑗 = 1, then 𝑄⁡ = ⁡ 𝑄 + 𝑃;

 𝑐) Output 𝑄.

Algorithm 2: addition and subtraction method

Input: a point 𝑃, an 𝑙-bit integer 𝑘 = ∑
𝑙−1

𝑗=0
𝑘𝑗2

𝑗 , 𝑘𝑗 ∈ {0, 1}.

Output: 𝑄 = [𝑘]𝑃.

a) Suppose the binary representation of 3𝑘 is ℎ𝑟ℎ𝑟−1…ℎ1ℎ0, and the most significant bit ℎ𝑟

is 1.

b) The binary representation of 𝑘 is 𝑘𝑟𝑘𝑟−1…𝑘1𝑘0; Obviously 𝑟 = 𝑙 or 𝑟 = 𝑙 + 1;

c) Set 𝑄 = 𝑃;

d) For 𝑖 = 𝑟 − 1 to 1, do:

d.1) 𝑄 = [2]𝑄;

d.2) If ℎ𝑖 = 1 and 𝑘𝑖 = 0, then 𝑄 = 𝑄 + 𝑃;

d.3) If ℎ𝑖 = 0 and 𝑘𝑖 = 1, then 𝑄 = 𝑄 − 𝑃;

e) Output 𝑄.

NOTE Subtracting the point (𝑥, 𝑦) is equivalent to adding the point (𝑥, −𝑦) (in 𝐹𝑝) or

(𝑥, 𝑥 + 𝑦) (in 𝐹2𝑚). There are several different methods to accelerate this operation.

Algorithm 3: sliding window method

Input: a point 𝑃, an 𝑙-bit integer 𝑘 = ∑
𝑙−1

𝑗=0
𝑘𝑗2

𝑗 , 𝑘𝑗 ∈ {0, 1}.

Output: 𝑄 = [𝑘]𝑃.

Let the window length 𝑟 > 1.

Pre-computation:

a) 𝑃1 = 𝑃, 𝑃2 = [2]𝑃;

b) For 𝑖 = 1 to 2𝑟−1 − 1, compute 𝑃2𝑖+1 = 𝑃2𝑖−1 + 𝑃2;

c) Set 𝑗 = 𝑙 − 1, 𝑄 = 0.

30

Main loop:

d) When 𝑗 ≥ 0, do:

d.1) if 𝑘𝑗 = 0, then 𝑄 = [2]𝑄, 𝑗 = 𝑗 − 1;

d.2) otherwise

d.2.1) let 𝑡 be the smallest integer satisfying 𝑗 − 𝑡 + 1 ≤ 𝑟 and 𝑘𝑡 = 1;

d.2.2) ℎ𝑗 = ∑
𝑗−𝑡

𝑖=0
𝑘𝑡+𝑖2

𝑖;

d.2.3) 𝑄 = [2𝑗−𝑡+1]𝑄 + 𝑃ℎ𝑗;

d.2.4) set 𝑗 = 𝑡 − 1;

e) Output 𝑄.

A3.3 Estimations of the complexity of elliptic curve scalar multiplication

The complexity of point addition and doubling of elliptic curves under different coordinate

systems are shown in Table A.6 and A.7 respectively.

Table A.6 Addition Complexity over Prime Fields

operation

coordinate systems

affine coordinate
standard projective

coordinate

Jacobian projective

coordinate

addition 1I+2M+1S 13M+2S 12M+4S

doubling 1I+2M+2S 8M+5S 4M+6S

Table A.7 Addition Complexity over Binary Extension Fields

operation

coordinate systems

affine coordinate
standard projective

coordinate

Jacobian projective

coordinate

addition 1I+2M+1S 15M+1S 15M+5S

doubling 1I+2M+2S 8M+3S 5M+5S

31

NOTE The I, M and S in the tables stand for the inverse, multiplication and square operations

respectively.

For the scalar multiplication 𝑄 = [𝑘]𝑃, let the bit length of 𝑘 be 𝑙 and the Hamming weight of

𝑘 be 𝑊. Then the Algorithm 1 needs 𝑙 − 1 doublings and 𝑊 − 1 additions; Algorithm 2 needs

𝑙 doublings and 𝑙/3 additions; Algorithm 3 needs 1 doubling and 2𝑟−1 − 1⁡ additions during

the pre-computation and 𝑙 − 1 doublings and
𝑙

𝑟+1
− 1 additions, which is 𝑙 doublings and

2𝑟−1 +
𝑙

𝑟+1
− 2 additions in total. In general, 𝑊 ≈ 𝑙/2. The complexity of scalar multiplication is

as follows (when the base field is the binary extension field and 𝑎 ≠ 0):

Algorithm 1:

When the base field is prime field:

 complexity under affine coordinate: 1.5𝑙I+3𝑙M+2.5𝑙S

 complexity under standard projective coordinate: 14.5𝑙M+6𝑙S

 complexity under Jacobian projective coordinate: 10𝑙M+8𝑙S

When the base field is binary extension field:

 complexity under affine coordinate: 1.5𝑙I+3𝑙M+2.5𝑙S

 complexity under standard projective coordinate: 15.5𝑙M+3.5𝑙S

 complexity under Jacobian projective coordinate: 12.5𝑙M+7.5𝑙S

Algorithm 2:

When the base field is prime field:

 complexity under affine coordinate: 1.33𝑙I+2.67𝑙M+2.33𝑙S

 complexity under standard projective coordinate: 12.33𝑙M+5.67𝑙S

 complexity under Jacobian projective coordinate: 8𝑙M+7.33𝑙S

When the base field is binary extension field:

 complexity under affine coordinate: 1.33𝑙I+2.67𝑙M+2.33𝑙S

 complexity under standard projective coordinate: 13𝑙M+3.33𝑙S

 complexity under Jacobian projective coordinate: 10𝑙M+6.67𝑙S

Algorithm 3:

When the base field is prime field:

 complexity under affine coordinate: (𝑙 +
𝑙

𝑟+1
+ 2𝑟−1 − 2)(2𝑀 + 𝐼 + 𝑆)+𝑙S

 complexity under standard projective coordinate: (
𝑙

𝑟+1
+ 2𝑟−1 − 2)(13𝑀 +

𝑆)+𝑙(8M+5S)

 complexity under Jacobian projective coordinate: (
𝑙

𝑟+1
+ 2𝑟−1 − 2)(12𝑀 +

4𝑆)+𝑙(4M+6S)

When the base field is binary extension field:

32

 complexity under affine coordinate: (𝑙 +
𝑙

𝑟+1
+ 2𝑟−1 − 2)(2𝑀 + 𝐼 + 𝑆)+𝑙S

 complexity under standard projective coordinate: (
𝑙

𝑟+1
+ 2𝑟−1 − 2)(15𝑀 +

1𝑆)+𝑙(8M+3S)

 complexity under Jacobian projective coordinate: (
𝑙

𝑟+1
+ 2𝑟−1 − 2)(15𝑀 +

5𝑆)+𝑙(5M+5S)

A.4 Methods for solving discrete logarithm problems

A.4.1 Methods for solving elliptic curve discrete logarithm problems

For an elliptic curve 𝐸(𝐹𝑞), the point 𝑃 ∈ 𝐸(𝐹𝑞) with order 𝑛 and 𝑄 ∈ 〈𝑃〉, the elliptic curve

discrete logarithm problem is to determine the integer 𝑘 ∈ [0, 𝑛 − 1] such that 𝑄 = [𝑘]𝑃.

The existing attacks on ECDLP are:

a) Pohlig-Hellman method: let 𝑙 be the largest prime divisor of 𝑛, then the time complexity is

𝑂(𝑙1/2);

b) BSGS method: the time and space complexity are both (𝜋𝑛/2)1/2;

c) Pollard's method: the time complexity is (𝜋𝑛/2)1/2;

d) Parallel Pollard's method: let 𝑟 be the numbers of parallel processors. The time complexity

reduces to (𝜋𝑛/2)1/2/𝑟;

e) MOV method: reduces the ECDLP over supersingular curves and similar curves to DLP over

𝐹𝑞’s small extension fields (This is a method of sub-exponential complexity);

f) Anomalous method: efficient attack methods for the anomalous curves (curves of #𝐸(𝐹𝑞) =

𝑞) (This is a method of polynomial complexity);

g) GHS method: use Weil descent technique to solve the ECDLP of curves over binary extension

field (the extension degree is a composite number), and convert the ECDLP to hyper-elliptic

curve discrete logarithm problem, and there is the algorithm with sub-exponential

complexity to this problem.

For discrete logarithm problems on general curves, the current methods all have exponential

complexity, and no efficient attack with sub-exponential complexity has been found; for discrete

logarithm problems on some special curves, there exist algorithms with polynomial complexity

or sub-exponential complexity.

When choosing the curves, the weak elliptic curves with respect to cryptography which are

vulnerable to the above attacks shall not be used.

33

A.4.2 Conditions for secure elliptic curves

A.4.2.1 Condition for resisting the MOV attack

The reducing attack by A. Menezes, T. Okamoto, S. Vanstone, G. Frey and H. Ruck reduces ECDLP

over 𝐹𝑞 to DLP over 𝐹𝑞𝐵 ⁡ (𝐵 > 1). This attack is practical only when 𝐵 is small which is not the

case for most elliptic curves. The condition for resisting MOV attack is to ensure that an elliptic

curve is vulnerable to this reducing attack. Most elliptic curves over 𝐹𝑞 satisfy this condition.

Before validating the condition, an MOV threshold should be chosen. The MOV threshold is a

positive integer 𝐵 such that computing DLP over 𝐹𝑞𝐵 is at least as hard as computing ECDLP

over 𝐹𝑞 . For 𝑞 > 2191, it requires 𝐵 ≥ 27. Choosing 𝐵 ≥ 27 eliminates supersingular elliptic

curves as well.

The following algorithm is used to validate that the system parameters are resistant to the MOV

attack.

Input: the MOV threshold 𝐵, prime exponent 𝑞 and prime 𝑛.

Output: "CORRECT" if the elliptic curve is resistant to MOV attack; otherwise "WRONG".

a) Set 𝑡 = 1.

b) For i from 1 to B do:

 b.1) Set 𝑡 = (𝑡 ⋅ 𝑞)⁡ 𝑚𝑜𝑑⁡ 𝑛;

 b.2) If 𝑡 = 1, then output "WRONG" and terminate;

c) Output "CORRECT".

A.4.2.2 Condition for resisting the anomalous curve attack

Let 𝐸(𝐹𝑝) be an elliptic curve over the prime field Fp. If #𝐸(𝐹𝑝) = 𝑝, then 𝐸(𝐹𝑝) is called an

anomalous curve. N. It was proved by Smart, T. Satoh and K. Araki that the DLP on the anomalous

curves can be solved in polynomial time. The condition for resisting the anomalous curve attack

is #E(Fp) ≠ 𝑝. Most elliptic curves over 𝐹𝑝 satisfy this condition.

The following algorithm is used to validate that the system parameters are resistant to the

anomalous curve attack.

Input: an elliptic curve 𝐸(𝐹𝑝) over Fp and its order 𝑁 = #𝐸(𝐹𝑝).

Output: "CORRECT" if the elliptic curve is resistant to the anomalous curve attack; otherwise

"WRONG".

a) If 𝑁 = 𝑝, then output "WRONG"; otherwise output "CORRECT".

34

A.4.2.3 Other conditions

In order to resisting the Pohlig-Hellman attack and the Pollard attack, the order of the base point

𝑛 shall be a large prime; and for the GHS attack, the 𝑚 in 𝐹2𝑚 shall be a prime.

A.5 Compression of points on elliptic curve

A.5.1 Overview

For any nonzero point 𝑃 = (𝑥𝑃 , 𝑦𝑃) on 𝐸(𝐹𝑞), this point can be represented simply by the

𝑥 -coordinate 𝑥𝑃 and a specific bit derived from 𝑥𝑃 and 𝑦𝑃 . This is the compression

representation of points.

A.5.2 Compression and decompression methods for points on elliptic curves over
𝑭𝒑

Let 𝑃 = (𝑥𝑃 , 𝑦𝑃) be a point on 𝐸:⁡ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, and 𝑦̃𝑃 be the rightmost bit of 𝑦𝑃 . Then 𝑃

can be represented by 𝑥𝑃 and the bit 𝑦̃𝑃 .

The method of recovering 𝑦𝑃 from 𝑥𝑃 and 𝑦̃𝑃 is as follows:

a) Compute the field element 𝛼 = (𝑥𝑃
3 + 𝑎𝑥𝑃 + 𝑏)⁡ mod⁡ p;

b) Compute the square root 𝛽 of 𝛼⁡ mod⁡ p (see Annex B.1.4). If no square root exists, then

report an error;

c) If the rightmost bit of 𝛽 is equal to 𝑦̃𝑃 , then set 𝑦𝑃 = 𝛽; otherwise set 𝑦𝑃 = 𝑝 − 𝛽.

A.5.3 Compression and decompression methods for points on elliptic curves 𝑭𝟐𝒎

Let 𝑃 = (𝑥𝑃 , 𝑦𝑃) be a point on 𝐸:⁡ 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 defined over 𝐹2𝑚 . If 𝑥𝑃 = 0, then

set 𝑦̃𝑃 = 0; if 𝑥𝑃 ≠ 0, then set 𝑦̃𝑃 be the rightmost bit of 𝑦𝑃 ⋅ 𝑥𝑃
−1.

The method of recovering 𝑦𝑃 from 𝑥𝑃 and 𝑦̃𝑃 is as follows:

a) If 𝑥𝑃 = 0, then 𝑦𝑃 = 𝑏
2𝑚−1 (𝑦𝑃 is a square root of 𝑏 in 𝐹2𝑚 .);

b) If 𝑥𝑃 ≠ 0, then:

b.1) Compute 𝛽 = 𝑥𝑃 + 𝑎 + 𝑏𝑥𝑃
−2 in 𝐹2𝑚 .

b.2) Find a field element 𝑧 such that 𝑧2 + 𝑧 = 𝛽 (see Annex B.1.6). If no solutions

exist, report an error;

b.3) Set the last bit of 𝑧 as 𝑧̃;

b.4) If 𝑦𝑃 ≠ 𝑧̃, set 𝑧 = 𝑧 + 1, where 1 is the multiplicative identity.

35

b.5) Compute 𝑦𝑃 = 𝑥𝑃 ⋅ 𝑧.

36

Annex B

(informative)

Number theoretic algorithms

B.1 Finite fields and modular arithmetic

B.1.1 Exponentiation operation in finite fields

Let 𝑎 be a positive integer, 𝑔 be an element in the field 𝐹𝑞 , then the exponentiation is the

process of computing 𝑔𝑎 . By the binary method described below, exponentiation can be

performed effectively.

Input: a positive integer 𝑎, a field 𝐹𝑞 and a field element 𝑔.

Output: 𝑔𝑎 .

a) Set 𝑒 = 𝑎⁡ mod⁡ (𝑞 − 1), if 𝑒 = 0, then output 1;

b) The binary representation of 𝑒 is 𝑒𝑟𝑒𝑟−1…𝑒1𝑒0, and the most significant bit 𝑒𝑟 is 1;

c) Set 𝑥 = 𝑔;

d) For 𝑖 = 𝑟 − 1 to 0, do:

d.1) Set 𝑥 = 𝑥2;

d.2) If 𝑒𝑖 = 1, then set 𝑥 = 𝑔 ⋅ 𝑥;

e) Output 𝑥.

For other accelerated algorithms, please refer to (Brickell et al. 1993), (Knuth 1981).

B.1.2 Inverse operation in finite fields

Let 𝑔 be a nonzero element in the field 𝐹𝑞 . Then the inverse element 𝑔−1 is the field element 𝑐

satisfying 𝑔 ⋅ 𝑐 = 1 . Since 𝑐⁡ = 𝑔𝑞−2 , the inverse operation can be implemented using

exponentiation operation. Note that, if 𝑞 is prime and 𝑔 is an integer satisfying 1 ≤ 𝑔 ≤ 𝑞 − 1,

then 𝑔−1 is the integer 𝑐, 1 ≤ 𝑐 ≤ 𝑞 − 1, and 𝑔 ⋅ 𝑐 ≡ 1⁡ (mod⁡ 𝑞).

Input: a field 𝐹𝑞 and a nonzero field element 𝑔 in 𝐹𝑞 .

Output: the inverse element 𝑔−1.

a) Compute 𝑐 = 𝑔𝑞−2 (see B.1.1);

37

b) Output 𝑐.

A more efficient method is the extended Euclidean algorithm; please refer to (Knuth D. 1981).

B.1.3 Generation of the Lucas sequence

Let 𝑋 and 𝑌 be two nonzero integers. The Lucas sequences 𝑈𝑘 and 𝑉𝑘 of 𝑋 and 𝑌 are

defined as follows:

𝑈0 = 0, 𝑈1 = 1, if 𝑘 ≥ 2, 𝑈𝑘 = 𝑋 ⋅ 𝑈𝑘−1– 𝑌 ⋅ 𝑈𝑘−2;

𝑉0 = 2, 𝑉1 = 𝑋, if 𝑘 ≥ 2, 𝑉𝑘 = 𝑋 ⋅ 𝑉𝑘−1–𝑌 ⋅ 𝑉𝑘−2.

The recurrences above are suitable for calculating the 𝑈𝑘 and 𝑉𝑘 for small 𝑘's. For large integer

𝑘, the following algorithm can calculate 𝑈𝑘⁡ mod⁡ 𝑞 and 𝑉𝑘⁡ mod⁡ 𝑞 efficiently.

Input: an odd prime 𝑝, integers 𝑋 and 𝑌, a positive integer 𝑘.

Output:⁡ 𝑈𝑘 ⁡ mod⁡ 𝑝 and 𝑉𝑘 ⁡ mod⁡ 𝑝.

a) Set ∆= 𝑋2⁡ – 4𝑌;

b) The binary representation of 𝑘 is 𝑘𝑟𝑘𝑟−1…𝑘1𝑘0, and the most significant bit 𝑘𝑟 is 1;

c) Set 𝑈 = 1, 𝑉 = 𝑋;

d) For 𝑖 = 𝑟 − 1 to 0, do:

d.1) Set (𝑈, 𝑉) = ((𝑈 ⋅ 𝑉)⁡ mod⁡ 𝑝, (𝑉2 + ∆ ⋅ 𝑈2)/2)⁡ mod⁡ 𝑝);

d.2) If 𝑘𝑖 = 1, then set (𝑈, 𝑉) = (((𝑈 ⋅ 𝑋 + 𝑉)/2)⁡ mod⁡ 𝑝, (𝑋 ⋅ 𝑉 + ∆ ⋅ 𝑈)/2)⁡ mod⁡ 𝑝);

e) Output 𝑈 and 𝑉.

B.1.4 Solving square root of prime moduli

Let 𝑝 be an odd prime and 𝑔 be an integer satisfying 0 ≤ 𝑔 < 𝑝. The square root (mod 𝑝) of 𝑔

is the integer 𝑦, where 0 ≤ 𝑦 < 𝑝, such that 𝑦2 = 𝑔⁡ (mod⁡ 𝑝).

If 𝑔 = 0, then there is only one square root, 𝑦 = 0; if 𝑔 ≠ 0, then there are zero or two square

roots (mod 𝑝), and if 𝑦 is one of the roots, then the other root is 𝑝 − 𝑦.

The following algorithm can determine whether the square roots of 𝑔 exist. If they exist, then

the algorithm will compute one root.

Input: an odd prime 𝑝, an integer 𝑔, 0 < 𝑔 < 𝑝.

38

Output: if the square roots exist, then output a square root mod 𝑝; otherwise output "no square

root".

Algorithm 1: for 𝑝 = 3⁡ (mod⁡ 4), there is a positive integer 𝑢 satisfying 𝑝⁡ = ⁡ 4𝑢⁡ + ⁡ 3.

a) Compute 𝑦 = 𝑔𝑢+1⁡ mod⁡ 𝑝 (see B.1.1);

b) Compute 𝑧 = 𝑦2⁡ mod⁡ 𝑝;

c) If 𝑧 = 𝑔, then output 𝑦; otherwise output "no square root".

Algorithm 2: for 𝑝 = 5⁡ (mod⁡ 8), there is a positive integer 𝑢 satisfying 𝑝⁡ = ⁡ 8𝑢⁡ + ⁡ 5.

a) Compute 𝑧 = 𝑔2𝑢+1⁡ mod⁡ 𝑝 (see B.1.1);

b) If 𝑧 = 1⁡ (mod⁡ 𝑝), compute 𝑦 = 𝑔𝑢+1⁡ mod⁡ 𝑝, output 𝑦 and terminate the algorithm;

c) If 𝑧 = −1⁡ (mod⁡ 𝑝) , compute 𝑦 = (2𝑔 ⋅ (4𝑔)𝑢⁡)⁡ mod⁡ 𝑝 , output 𝑦 and terminate the

algorithm;

d) Output "no square root".

Algorithm 3: for 𝑝 = 1⁡ (mod⁡ 8), there is a positive integer 𝑢 satisfying 𝑝 = 8𝑢⁡ + ⁡ 1.

a) Set 𝑌⁡ = ⁡ 𝑔;

b) Generate the random value 𝑋, 0 < 𝑋 < 𝑝;

c) Compute the Lucas sequences (see B.1.3): 𝑈 = 𝑈4𝑢+1⁡ mod⁡ 𝑝 and 𝑉 = 𝑉4𝑢+1⁡ mod⁡ 𝑝;

d) If 𝑉2 = 4𝑌⁡ (mod⁡ 𝑝), then output 𝑦 = (𝑉/2)⁡ mod⁡ 𝑝 and terminate the algorithm;

e) If 𝑈⁡ mod⁡ 𝑝 ≠ 1 and 𝑈⁡ mod⁡ 𝑝 ≠ 𝑝 − 1, then output "no square root" and terminate the

algorithm;

f) Go to b).

B.1.5 Trace function and semi-trace function

Suppose 𝛼 is an element in 𝐹2𝑚 . The trace of 𝛼 is 𝑇𝑟(𝛼) = 𝛼 + 𝛼2 + 𝛼2
2
…+ 𝛼2

𝑚−1
.

Half of the elements in 𝐹2𝑚 whose trace is 0 and another half whose trace is 1. The computation

of trace is as follows:

If the elements in 𝐹2𝑚 are represented in normal basis, then if 𝛼 = (𝛼0𝛼1⋯𝛼𝑚−1), 𝑇𝑟(𝛼) =

𝛼0⨁𝛼1⨁⋯⨁𝛼𝑚−1.

If the elements in 𝐹2𝑚 are represented in polynomial basis, then

39

a) Set 𝑇 = 𝛼;

b) For i from 1 to m-1 do:

 b.1) 𝑇 = 𝑇2 + 𝛼;

c) Output 𝑇𝑟(𝛼) = 𝑇.

If 𝑚 is odd, then the semi-trace of 𝛼 is 𝛼 + 𝛼2
2
+ 𝛼2

4
+⋯+ 𝛼2

𝑚−1
.

If the elements in 𝐹2𝑚 are represented in polynomial basis, then the semi-trace can be computed

via the following method.

a) Set 𝑇 = 𝛼;

b) For i from 1 to (m-1)/2 do:

 b.1) 𝑇 = 𝑇2;

 b.2) 𝑇 = 𝑇2 + 𝛼;

c) Output 𝑇.

B.1.6 Solving quadratic equations over 𝑭𝟐𝒎

Suppose 𝛽 is an element in 𝐹2𝑚 . The equation 𝑧2 + 𝑧 = 𝛽 has 2 − 2𝑇𝑟(𝛽) solutions in 𝐹2𝑚 . If

𝛽 = 0, the solutions are 0 or 1; if 𝛽 ≠ 0, if 𝑧 is one of the solutions, then 𝑧 + 1 is a solution too.

For given 𝛽, the following algorithm can be used to determine if the equation have solutions. If it

has, then output one of them.

Input: 𝐹2𝑚 and a basis, 𝛽 ≠ 0.

Output: If solutions exist, output 𝑧 such that 𝑧2 + 𝑧 = 𝛽; otherwise output "no solutions".

Algorithm 1: For the normal basis representation

a) Let 𝛽 = (𝛽0⁡ 𝛽1…𝛽𝑚−1);

b) Set 𝑧0 = 0;

c) For i from 1 to m-1 do:

 c.1) 𝑧𝑖 = 𝑧𝑖−1⊕𝛽𝑖;

d) Set 𝑧 = (𝑧0𝑧1…𝑧𝑚−1);

e) Compute 𝛾 = 𝑧2 + 𝑧;

40

f) If 𝛾 = 𝛽, then output 𝑧; otherwise output "no solutions".

Algorithm 2: For polynomial basis representation (when m is odd)

a) Compute the semi-trace of 𝑧 = 𝛽 (see Annex B.1.5);

b) Compute 𝛾 = 𝑧2 + 𝑧;

c) If 𝛾 = 𝛽, then output 𝑧; otherwise output "no solutions".

Algorithm 3: For any representation

a) Choose 𝜏 ∈ 𝐹2𝑚, such that 𝜏 + 𝜏2 +⋯+ 𝜏2
𝑚−1

= 1;

b) Set 𝑧 = 0,𝑤 = 𝛽;

c) For i from 1 to m-1 do:

 c.1) 𝑧 = 𝑧2 + 𝑤2 ⋅ 𝜏;

 c.2) 𝑤 = 𝑤2 + 𝛽;

d) If 𝑤 ≠ 0, then output "no solutions" and terminate.

e) Output 𝑧.

B.1.7 Checking the order of an integer modulo a prime

Suppose 𝑝⁡ is a prime and the integer 𝑔 satisfies 1 < 𝑔 < 𝑝. The order of 𝑔⁡ 𝑚𝑜𝑑⁡ 𝑝 is the least

positive integer 𝑘 such that 𝑔𝑘 ≡ 1⁡ (𝑚𝑜𝑑⁡ 𝑝). The following algorithm is used to check that if

the order of 𝑔⁡ 𝑚𝑜𝑑⁡ 𝑝 is 𝑘.

Input: a prime 𝑝, a positive integer 𝑘 which divides 𝑝 − 1, and an integer 1 < 𝑔 < 𝑝.

Output: If 𝑘 is the order of 𝑔⁡ 𝑚𝑜𝑑⁡ 𝑝, then output "CORRECT", otherwise output "WRONG".

a) Obtain the prime factors of 𝑘;

b) If 𝑔𝑘 ⁡ 𝑚𝑜𝑑⁡ 𝑝 ≠ 1, the output "WRONG" and terminate;

c) For every prime factor 𝑙 of 𝑘, do:

 c.1) If 𝑔𝑘/𝑙 ⁡ 𝑚𝑜𝑑⁡ 𝑝 = 1, then output "WRONG" and terminate;

d) Output "CORRECT".

41

B.1.8 Computing the order of an integer modulo a prime

Suppose 𝑝⁡ is a prime and the integer 𝑔 satisfies⁡ 1 < 𝑔 < 𝑝. The following algorithm is used to

compute the order of 𝑔⁡ 𝑚𝑜𝑑⁡ 𝑝. The algorithm is practical when 𝑝 is small.

Input: a prime 𝑝, and an integer 1 < 𝑔 < 𝑝.

Output: the order of ⁡ 𝑚𝑜𝑑⁡ 𝑝 𝑘.

a) Set 𝑏 = 𝑔, 𝑗 = 1;

b) 𝑏 = (𝑔 ⋅ 𝑏)⁡ 𝑚𝑜𝑑⁡ 𝑝, 𝑗 = 𝑗 + 1;

c) If 𝑏 > 1, then go to b);

d) Output 𝑘 = 𝑗.

B.1.9 Construction of integers with given order modulo a prime

Suppose 𝑝 is a prime and 𝑇 divides 𝑝 − 1. The following algorithm can obtain an element in 𝐹𝑝

whose order is 𝑇. The algorithm is practical when 𝑝 is small.

Input: a prime 𝑝 and an integer 𝑇 divides 𝑝 − 1.

Output: an integer 𝑢 whose order modulo 𝑝 is 𝑇.

a) Generate an integer 𝑔 randomly, such that 1 < 𝑔 < 𝑝;

b) Compute the order of 𝑔⁡ 𝑚𝑜𝑑⁡ 𝑝 𝑘 (see Annex B.1.8);

c) If 𝑘 is not divisible by 𝑇, go to a);

d) Output 𝑢 = 𝑔𝑘/𝑇⁡ 𝑚𝑜𝑑⁡ 𝑝.

B.1.10 Probabilistic primality test

Let 𝑢 be a large positive integer. The following probabilistic algorithm (Miller-Rabin test) can

decide whether 𝑢 is a prime or a composite.

Input: a large odd 𝑢 and a large positive integer 𝑇.

Output: "probably prime" or "composite".

a) Compute 𝑣 and the odd 𝑤 satisfying 𝑢 − 1 = 2𝑣 ⋅ 𝑤;

b) For 𝑗 = 1 to T, do:

b.1) Select a random value 𝑎 in the range [2, 𝑢 − 1];

42

b.2) Set 𝑏 = 𝑎𝑤 ⁡ mod⁡ 𝑢;

b.3) If 𝑏 = 1 or 𝑢 − 1, then go to b.6);

b.4) For 𝑖 = 1 to 𝑣 − 1, do:

b.4.1) Set 𝑏 = 𝑏2⁡ mod⁡ 𝑢;

b.4.2) If 𝑏 = 𝑢 − 1, then go to b.6);

b.4.3) If 𝑏 = 1, then output "composite" and stop the algorithm;

b.4.4) The next 𝑖;

b.5) Output "composite" and stop the algorithm;

b.6) The next 𝑗;

c) Output "probably prime".

If the algorithm outputs "composite", then 𝑢 is a composite. If the algorithm outputs "probably

prime", then the probability of a composite 𝑢 is less than 2−2𝑇. Thus, by selecting a 𝑇 large

enough, then the probability is negligible.

B.1.11 Approximate primality test

For a given bound 𝑙𝑚𝑎𝑥 , if all the prime factors of a positive integer ℎ are not greater than 𝑙𝑚𝑎𝑥 ,

ℎ is called 𝑙𝑚𝑎𝑥-smooth. For a given positive integer 𝑟𝑚𝑖𝑛 , if there exists some prime 𝑣 ≥ 𝑟𝑚𝑖𝑛 ,

such that 𝑢 = ℎ𝑣, and ℎ is 𝑙𝑚𝑎𝑥-smooth, then 𝑢 is called an approximate prime. The following

algorithm checks the approximate primality of 𝑢.

Input: positive integers 𝑢, 𝑙𝑚𝑎𝑥 , 𝑟𝑚𝑖𝑛 .

Output: If 𝑢 is an approximate prime, then output ℎ, 𝑣 ; otherwise output "is not an

approximate prime".

a) Set 𝑣 = 𝑢, ℎ = 1;

b) For l from 2 to 𝑙𝑚𝑎𝑥 do:

 b.1) If 𝑙 is composite, go to b.3);

 b.2) If 𝑙 divides 𝑣, execute the loop:

 b.2.1) Set 𝑣 = 𝑣/𝑙 and ℎ = ℎ𝑙;

 b.2.2) If 𝑣 < 𝑟𝑚𝑖𝑛 , then output "is not an approximate prime" and terminate.

43

 b.3) Next 𝑙.

c) If 𝑣 is a probabilistic prime, then output ℎ and 𝑣 and terminate.

d) Output "is not an approximate prime".

B.2 Polynomials over finite fields

B.2.1 Greatest common divisor

If 𝑓(𝑡) ≠ 0 and 𝑔(𝑡) ≠ 0 are two polynomials whose coefficients are in the field 𝐹𝑞 , then there

is only one monic polynomial 𝑑(𝑡) (its coefficients are also in the field 𝐹𝑞) with the largest

degree, and it divides 𝑓(𝑡) and 𝑔(𝑡) simultaneously. The polynomial 𝑑(𝑡) is called the greatest

common divisor of 𝑓(𝑡) and 𝑔(𝑡), which is denoted by gcd(𝑓(𝑡), 𝑔(𝑡)). The following algorithm

(Euclidean algorithm) is used to compute the greatest common divisor of two polynomials.

Input: a finite field 𝐹𝑞 , and two nonzero polynomials 𝑓(𝑡) ≠ 0 and 𝑔(𝑡) ≠ 0 in 𝐹𝑞 .

Output: 𝑑(𝑡) = gcd(𝑓(𝑡), 𝑔(𝑡)).

a) Set 𝑎(𝑡) ⁡ = ⁡ 𝑓(𝑡), 𝑏(𝑡) ⁡ = ⁡ 𝑔(𝑡);

b) When 𝑏(𝑡) ≠ 0, execute the loop:

b.1) Set 𝑐(𝑡) = 𝑎(𝑡)⁡ mod⁡ 𝑏(𝑡);

b.2) Set 𝑎(𝑡) = 𝑏(𝑡);

b.3) Set 𝑏(𝑡) = 𝑐(𝑡);

c) Let 𝛼 be the coefficient of the first term in 𝑎(𝑡) and output 𝛼−1𝑎(𝑡).

B.2.2 Finding the roots of the irreducible polynomials over 𝑭𝟐 in 𝑭𝟐𝒎

Let 𝑓(𝑡) be a degree-𝑚 polynomial over 𝐹2 , then 𝑓(𝑡) has 𝑚 different roots in 𝐹2𝑚 . The

following algorithm can be used to compute one of the roots efficiently.

Input: an irreducible polynomial 𝑓(𝑡) over 𝐹2 and 𝐹2𝑚 .

Output: one of the roots of 𝑓(𝑡) in 𝐹2𝑚 .

a) Set 𝑔(𝑡) = 𝑓(𝑡);

b) When deg(𝑔) > 1, execute the loop:

b.1) Choose 𝑢 ∈ 𝐹2𝑚 randomly;

b.2) Set 𝑐(𝑡) = 𝑢𝑡;

44

b.3) For i from 1 to m-1 do:

 b.3.1) 𝑐(𝑡) = (𝑐(𝑡)2 + 𝑢𝑡)⁡ 𝑚𝑜𝑑⁡ 𝑔(𝑡);

b.4) Set ℎ(𝑡) = gcd(𝑐(𝑡), 𝑔(𝑡))⁡ ;

b.5) If ℎ(𝑡) is a constant or deg(𝑔) = deg⁡(ℎ), go to b.1);

b.6) If 2 deg(ℎ) > deg⁡(𝑔), set 𝑔(𝑡) = 𝑔(𝑡)/ℎ(𝑡), otherwise set 𝑔(𝑡) = ℎ(𝑡);

c) Output 𝑔(0).

NOTE The above operations are conducted in 𝐹2𝑚 .

B.2.3 Bases conversions

Given field 𝐹2𝑚 and two bases 𝐵1, 𝐵2 , the following algorithm converts between 𝐵1 and 𝐵2.

a) Let 𝑓(𝑡) be the field polynomial in 𝐵2, that is:

 a.1) If 𝐵2 is a polynomial basis, then let 𝑓(𝑡) be an 𝑚-degree reduced polynomial over

𝐹2;

 a.2) If 𝐵2 is a Type-I optimal normal basis, then let 𝑓(𝑡) = 𝑡𝑚 + 𝑡𝑚−1 +⋯+ 𝑡 + 1.

a.3) If 𝐵2 is a Type-II optimal normal basis, then let 𝑓(𝑡) = ∑ 𝑡𝑗0≤𝑗≤𝑚
𝑚−𝑗≺𝑚+𝑗

, where if the

binary representations of 𝑎, 𝑏 are: 𝑎 = ∑𝑢𝑖2
𝑖 ,𝑏 = ∑𝑤𝑖2

𝑖 , then 𝑎 ≺ 𝑏 means 𝑢𝑖 ≤ 𝑤𝑖 for all 𝑖.

a.4) If 𝐵2 is a Gaussian normal basis of type 𝑇 ≥ 3, then:

 a.4.1) Set 𝑝 = 𝑇𝑚 + 1;

 a.4.2) Generate an integer 𝑢 whose order modulo 𝑝 is 𝑇. (See B.1.9.)

 a.4.3) For 𝑘 = 1 to 𝑚 do:

𝑒𝑘 = ∑ exp⁡(
2𝑘𝑢𝑗𝜋𝑖

𝑝
)𝑇−1

𝑗=0 , where 𝑖 is the imaginary unit.

 a.4.4) Compute the polynomial 𝑔(𝑡) = ∏ (𝑡 − 𝑒𝑘)
𝑚
𝑘=1 (the coefficients of 𝑔(𝑡) are

integers.)

 a.4.5) Output 𝑓(𝑡) = 𝑔(𝑡)⁡ 𝑚𝑜𝑑⁡ 2.

45

The complex numbers 𝑒𝑘 should be computed with enough precision so as to be the

same with every coefficient of 𝑔(𝑡). Every coefficient is an integer. It means that the biases

during the computation of the coefficients should be less than 1/2.

b) Let 𝛾 be a root of 𝑓(𝑡) with respect to 𝐵1. (𝛾 can be computed via the method in B.2.2.)

c) Let Γ be a matrix:

Γ = (

𝛾0,0 𝛾0,1 ⋯ 𝛾0,𝑚−1
𝛾1,0 𝛾1,1 … 𝛾1,𝑚−1
⋮ ⋮ ⋱ ⋮

𝛾𝑚−1,0 𝛾𝑚−1,1 ⋯ 𝛾𝑚−1,𝑚−1

),

where 𝛾𝑖,𝑗 are defined as follows:

 c.1) If 𝐵2 is a polynomial basis, then it can be represented as follows with respect to 𝐵1:

1 = (𝛾0,0𝛾0,1…𝛾0,𝑚−1)

𝛾 = (𝛾1,0𝛾1,1…𝛾1,𝑚−1)

𝛾2 = (𝛾2,0𝛾2,1…𝛾2,𝑚−1)

…

𝛾𝑚−1 = (𝛾𝑚−1,0𝛾𝑚−1,1…𝛾𝑚−1,𝑚−1)

 c.2) If 𝐵2 is a Gaussian normal basis (with type 𝑇 ≥ 1), then it can be represented as

follows with respect to 𝐵1:

1 = (𝛾0,0𝛾0,1…𝛾0,𝑚−1)

𝛾2 = (𝛾1,0𝛾1,1…𝛾1,𝑚−1)

𝛾4 = (𝛾2,0𝛾2,1…𝛾2,𝑚−1)

…

𝛾2
𝑚−1

= (𝛾𝑚−1,0𝛾𝑚−1,1…𝛾𝑚−1,𝑚−1)

d) If the representation of an element with respect to 𝐵2 is (𝛽0𝛽1…𝛽𝑚−1), then the

representation of this element with respect to 𝐵1 is

(𝛼0𝛼1…𝛼𝑚−1) = (𝛽0𝛽1…𝛽𝑚−1)Γ.

If the representation of an element with respect to 𝐵1 is (𝛼0𝛼1…𝛼𝑚−1), then the representation

of this element with respect to 𝐵2 is

(𝛽0𝛽1…𝛽𝑚−1) = (𝛼0𝛼1…𝛼𝑚−1)Γ
−1,

where Γ−1 is the inverse of Γ modulo 2.

46

B.2.4 Checking irreducibility for polynomials over 𝑭𝟐

Let 𝑓(𝑥) be a polynomial over 𝐹2, the following algorithm can be used to check the irreducibility

of 𝑓(𝑥) efficiently.

Input: a polynomial 𝑓(𝑥) over 𝐹2.

Output: if 𝑓(𝑥) is irreducible over 𝐹2, then output "CORRECT"; otherwise output "WRONG".

a) Set 𝑚 = deg(𝑓(𝑥));

b) Set 𝑢(𝑥) = 𝑥;

c) For 𝑖 = 1 to ⌊𝑑/2⌋, do:

c.1) Set 𝑢(𝑥) = 𝑢(𝑥)2⁡ mod⁡ 𝑓(𝑥);

c.2) Set 𝑔(𝑥) = gcd(𝑢(𝑥) + 𝑥, 𝑓(𝑥));

c.3) If 𝑔(𝑥) ≠ 1, then output "WRONG" and terminate;

d) Output "CORRECT".

B.3 Elliptic curve algorithms

B.3.1 Computing the order of elliptic curves

For random elliptic curves over finite fields, computing their orders are complicated. Currently,

SEA algorithm and Satoh algorithm are two practical algorithms. For details of computing the

orders, please refer to (Lehmann et al. 1994), (Muller 1995), (Satoh 2000), (Satoh 2002), (Satoh

et al. 2003), (Schoof 1985) and (Schoof 1995).

B.3.2 Finding points on elliptic curves.

Given an elliptic curve over finite field, the following algorithm can be used to find a point which

is not the zero point on the elliptic curve efficiently.

B.3.2.1 Elliptic curves over 𝑭𝒑

Input: a prime 𝑝, and parameters 𝑎 and 𝑏 of an elliptic curve 𝐸 over 𝐹𝑝.

Output: a nonzero point on 𝐸.

a) Select a random integer 𝑥, 0 ≤ 𝑥 ≤ 𝑝;

b) Set 𝛼 = (𝑥3 + 𝑎𝑥 + 𝑏)⁡ mod⁡ 𝑝;

c) If 𝛼 = 0, then output (𝑥, 0) and stop the algorithm;

47

d) Compute the square root of⁡ 𝛼⁡ mod⁡ 𝑝 (see B.1.4.1);

e) If d) outputs "no square root", then go to a);

f) Output (𝑥, 𝑦).

B.3.2.2 Elliptic curves over 𝑭𝟐𝒎

Input: finite field 𝐹2𝑚 , and parameters 𝑎 and 𝑏 of an elliptic curve 𝐸 over 𝐹2𝑚

Output: a nonzero point on 𝐸.

a) Select a random element 𝑥 of 𝐹2𝑚 .

b) If 𝑥 = 0, output (0, 𝑏2
𝑚−1

) and terminate;

c) Compute 𝛼 = (𝑥3 + 𝑎𝑥 + 𝑏).

d) If⁡ 𝛼 = 0, then output (𝑥, 0) and terminate;

e) Set 𝛽 = 𝑥−2𝛼;

f) Compute 𝑧 such that 𝑧2 + 𝑧 = 𝛽 (see Annex B.1.6);

g) If the output of f) is "no solutions", go to a);

h) Set 𝑦 = 𝑥 ⋅ 𝑧;

i) Output (𝑥, 𝑦).

48

Annex C

(informative)

Examples of curves

C.1 General requirements

In this appendix, all values are represented in hexadecimal form, where the left hand side is the

most significant bit side, and the right hand side is the least significant bit side.

C.2 Elliptic curves over 𝑭𝒑

Elliptic curve equation is 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.

Example 1: 𝐹𝑝-192 curve

prime 𝑝:

BDB6F4FE 3E8B1D9E 0DA8C0D4 6F4C318C EFE4AFE3 B6B8551F

𝑎:

BB8E5E8F BC115E13 9FE6A814 FE48AAA6 F0ADA1AA 5DF91985

𝑏:

1854BEBD C31B21B7 AEFC80AB 0ECD10D5 B1B3308E 6DBF11C1

base point 𝐺 = (𝑥, 𝑦) and its order 𝑛:

𝑥-coordinate:

4AD5F704 8DE709AD 51236DE6 5E4D4B48 2C836DC6 E4106640

𝑦-coordinate:

02BB3A02 D4AAADAC AE24817A 4CA3A1B0 14B52704 32DB27D2

order 𝑛:

BDB6F4FE 3E8B1D9E 0DA8C0D4 0FC96219 5DFAE76F 56564677

Example 1: 𝐹𝑝-256 curve

49

prime 𝑝:

8542D69E 4C044F18 E8B92435 BF6FF7DE 45728391 5C45517D 722EDB8B 08F1DFC3

𝑎:

787968B4 FA32C3FD 2417842E 73BBFEFF 2F3C848B 6831D7E0 EC65228B 3937E498

𝑏:

63E4C6D3 B23B0C84 9CF84241 484BFE48 F61D59A5 B16BA06E 6E12D1DA 27C5249A

base point 𝐺 = (𝑥, 𝑦) and its order 𝑛:

𝑥-coordinate:

421DEBD6 1B62EAB6 746434EB C3CC315E 32220B3B ADD50BDC 4C4E6C14 7FEDD43D

𝑦-coordinate:

0680512B CBB42C07 D47349D2 153B70C4 E5D7FDFC BFA36EA1 A85841B9 E46E09A2

order 𝑛:

8542D69E 4C044F18 E8B92435 BF6FF7DD 29772063 0485628D 5AE74EE7 C32E79B7

C.3 Elliptic curves over 𝑭𝟐𝒎

Elliptic curve equation is 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏.

Example 1: 𝐹2𝑚-193 curve

generating polynomial over base field:

𝑥193 + 𝑥15 + 1

𝑎:

0

𝑏:

00 2FE22037 B624DBEB C4C618E1 3FD998B1 A18E1EE0 D05C46FB

base point 𝐺 = (𝑥, 𝑦) and its order 𝑛:

𝑥-coordinate:

50

00 D78D47E8 5C936440 71BC1C21 2CF994E4 D21293AA D8060A84

𝑦-coordinate:

00 615B9E98 A31B7B2F DDEEECB7 6B5D8755 86293725 F9D2FC0C

order 𝑛:

80000000 00000000 00000000 43E9885C 46BF45D8 C5EBF3A1

Example 1: 𝐹2𝑚-257 curve

generating polynomial over base field:

𝑥257 + 𝑥12 + 1

𝑎:

0

𝑏:

00 E78BCD09 746C2023 78A7E72B 12BCE002 66B9627E CB0B5A25 367AD1AD 4CC6242B

base point 𝐺 = (𝑥, 𝑦) and its order 𝑛:

𝑥-coordinate:

00 CDB9CA7F 1E6B0441 F658343F 4B10297C 0EF9B649 1082400A 62E7A748 5735FADD

𝑦-coordinate:

01 3DE74DA6 5951C4D7 6DC89220 D5F7777A 611B1C38 BAE260B1 75951DC8 060C2B3E

order 𝑛:

7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF BC972CF7 E6B6F900 945B3C6A 0CF6161D

51

Annex D

(informative)

Verifiable generation of elliptic curve equation

parameters and validation

D.1 Verifiable generation of elliptic curve equation parameters

D.1.1 Verifiable generation of elliptic curve equation parameters over 𝑭𝒑

Method 1:

Input: a prime 𝑝.

Output: a bit string SEED and two elements 𝑎, 𝑏 of 𝐹𝑝.

a) Choose an arbitrary bit string SEED of length at least 192 bits;

b) Compute 𝐻 = 𝐻256(SEED), and denote 𝐻 = (ℎ255, ℎ254, … , ℎ0);

c) Set 𝑅 = ∑ ℎ𝑖2
𝑖255

𝑖=0 ;

d) Set 𝑟 = 𝑅⁡ mod⁡ 𝑝;

e) Choose two elements 𝑎, 𝑏 of 𝐹𝑝 such that 𝑟𝑏2 ≡ 𝑎3⁡ (mod⁡ 𝑝);

f) If (4𝑎3 + 27𝑏2)⁡ mod⁡ 𝑝 = 0, go to a);

g) The elliptic curve over 𝐹𝑝 is 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏;

h) Output (SEED, 𝑎, 𝑏).

Method 2:

Input: a prime 𝑝.

Output: a bit string SEED and two elements 𝑎, 𝑏 of 𝐹𝑝.

a) Choose an arbitrary bit string SEED of length at least 192 bits;

b) Compute 𝐻 = 𝐻256(SEED), and denote 𝐻 = (ℎ255, ℎ254, … , ℎ0);

c) Set 𝑅 = ∑ ℎ𝑖2
𝑖255

𝑖=0 ;

d) Set 𝑟 = 𝑅⁡ mod⁡ 𝑝;

52

e) Set 𝑏 = 𝑟;

f) Set 𝑎 as a fixed value of 𝐹𝑝;

g) If (4𝑎3 + 27𝑏2)⁡ mod⁡ 𝑝 = 0, go to a);

h) The elliptic curve over 𝐹𝑝 is 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏;

i) Output (SEED, 𝑎, 𝑏).

D.1.2 Verifiable generation of elliptic curve equation parameters over 𝑭𝟐𝒎

Input: field size 𝑞 = 2𝑚 , a reduced polynomial 𝑓(𝑥) = 𝑥𝑚 + 𝑓𝑚−1𝑥
𝑚−1 +⋯+ 𝑓2𝑥

2 + 𝑓1𝑥 +

𝑓0⁡ (𝑓𝑖 ∈ 𝐹2, 𝑖 = 0,1, … ,𝑚 − 1) of 𝐹2𝑚 .

Output: a bit string SEED and two elements 𝑎, 𝑏 of 𝐹2𝑚 .

a) Choose an arbitrary bit string SEED of length at least 192;

b) Compute 𝐻 = 𝐻256(SEED), and denote 𝐻 = (ℎ255, ℎ254, … , ℎ0);

c) If 𝑖 ≥ 256, then let ℎ𝑖 = 1; set the bit string 𝐻𝐻 = (h𝑚−1, ℎ𝑚−2, … , ℎ0) and 𝑏 be the

element of 𝐹2𝑚 corresponding to 𝐻𝐻.

d) If 𝑏 = 0, then go to a);

e) Set 𝑎 as a fixed value of 𝐹2𝑚;

f) The elliptic curve over 𝐹2𝑚 is 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏;

g) Output (SEED, 𝑎, 𝑏).

D.2 Validation of elliptic curve equation parameters

D.2.1 Validation of elliptic curve equation parameters over 𝑭𝒑

Method 1:

Input: a bit string SEED and two elements 𝑎, 𝑏 of 𝐹𝑝.

Output: “VALID” if the parameters are valid; otherwise “INVALID”.

a) Compute 𝐻′ = 𝐻256(SEED), and denote 𝐻′ = (ℎ255, ℎ254, … , ℎ0);

b) Set 𝑅′ = ∑ ℎ𝑖2
𝑖255

𝑖=0 ;

c) Set 𝑟′ = 𝑅′⁡ mod⁡ 𝑝;

53

d) If 𝑟′𝑏2 ≡ 𝑎3⁡ (mod⁡ 𝑝), then output “VALID”; otherwise, output “INVALID”.

Method 2:

Input: a bit string SEED and two elements 𝑎, 𝑏 of 𝐹𝑝.

Output: “VALID” if the parameters are valid; otherwise “INVALID”.

a) Compute 𝐻′ = 𝐻256(SEED), and denote 𝐻′ = (ℎ255, ℎ254, … , ℎ0);

b) Set 𝑅′ = ∑ ℎ𝑖2
𝑖255

𝑖=0 ;

c) Set 𝑟′ = 𝑅′⁡ mod⁡ 𝑝;

d) If 𝑟′ = 𝑏, then output “VALID”; otherwise, output “INVALID”.

D.2.2 Validation of elliptic curve equation parameters over 𝑭𝟐𝒎

Input: a bit string SEED and two elements 𝑎, 𝑏 of 𝐹2𝑚 .

Output: “VALID” if the parameters are valid; otherwise “INVALID”.

a) Compute 𝐻′ = 𝐻256(SEED), and denote 𝐻′ = (ℎ255, ℎ254, … , ℎ0);

b) If 𝑖 ≥ 256, then let ℎ𝑖 = 1; set the bit string 𝐻𝐻′ = (h𝑚−1, ℎ𝑚−2, … , ℎ0) and 𝑏′ be the

element in 𝐹2𝑚 corresponding to 𝐻𝐻′.

c) If 𝑏′ = 𝑏, then output “VALID”; otherwise, output “INVALID”.

NOTE In this annex, the function 𝐻256() is a cryptographic hash function with output size

256 bits.

54

Bibliography

[1] GB/T 15843.1-1999 信息技术 安全技术 实体鉴别 第 1 部分：概述

[2] GB/T 25069-2010 信息安全技术 术语

[3] Agnew G, Beth T, Mullin R,et al. 1993. Arithmetic operations in GF(2m). Journal of

Cryptology,(6):3-13

[4] Agnew G, Mullin R, Onyszchuk I,et al. 1991. An implementation for a fast public-key

cryptosystem.Journal of Cryptology, (3):63-79

[5] ANSI X9.62-1999 Public Key Cryptography For The Financial Services Industry：The

Elliptic Curve Digital Signature Algorithm (ECDSA). American National Standards Institute

[6] ANSI X9.63-2001 Public Key Cryptography for the Financial Services Industry:Key

Agreement and key Transport Using Elliptic Curve Cryptography .American Nation

Standard Institute

[7] Brickell E,Gordon D,Mccurley K,et al.1993. Fast Exponentiation with precomputation.

Advances in Cryptology - EUROCRYPT’92. LNCS 658. Berlin: Springer-Verlag .200-207

[8] Blake I,Seroussi G,Smart N.1999. Elliptic Curves in Cryptography. Cambridge:

Cambridge University Press

[9] ISO/IEC 15946-1: 2002 Information technology—Security techniques—Cryptographic

techniques based on elliptic curves—Part 1:General

[10] ISO/IEC 15946-2: 2002 Information technology—Security techniques—Cryptographic

techniques based on elliptic curves—Part 2:Digital signatures

[11] ISO/IEC 15946-3: 2002 Information technology—Security techniques—Cryptographic

techniques based on elliptic curves—Part 3:Key establishment

[12] ISO/IEC 15946-4: 2003 Information technology—Security techniques—Cryptographic

techniques based on elliptic curves—Part 4:Digital signatures giving message recovery

[13] ITU-T Recommendation X.680 Information Technology—Abstract Syntax Notation One

(ASN.1):Specification of Basic Notation(eqv ISO/IEC 8824-1)

[14] ITU-T Recommendation X.681 Information Technology—Abstract Syntax Notation One

(ASN.1):Information Object Specification(eqv ISO/IEC 8824-2)

[15] ITU-T Recommendation X.682 Information Technology—Abstract Syntax Notation One

(ASN.1):Constraint Specification(eqv ISO/IEC 8824-3)

55

[16] ITU-T Recommendation X.683 Information Technology—Abstract Syntax Notation One

(ASN.1):Parametrization of ASN.1 Specifications(eqv ISO/IEC 8824-4)

[17] ITU-T Recommendation X.690 Information Technology—ASN.1 Encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER) (eqv ISO/IEC 8825-1)

[18] ITU-T Recommendation X.691 Information Technology—ASN.1 Encoding Rules:

Specification of Packed Encoding Rules (PER) (eqv ISO/IEC 8825-2)

[19] Knuth D. 1981. The Art of Computer Programming .v.2. 2nd ed, Reading(MA):

Addison-Wesley

[20] Koblitz N.1987. Elliptic curve cryptosystems. Mathematics of Computation, (48)203-209

[21] Lehmann F , Maurer M, Müller V, et al. 1994. Counting the number of points on elliptic

curves over finite field of characteristic greater than three.In:Adleman L,Huang M D,ed.

Algorithmic Number Theory. LNCS 877.Berlin: Springer-Verlag.60-70

[22] Lidl R,Niederreiter H.1987. Finite Fields. Cambridge:Cambridge University Press

[23] Mceliece R.1987. Finite Fields for Computer Scientists and Engineers. Boston:Kluwer

Academic Publishers

[24] Menezes A.1993. Elliptic Curve Public Key Cryptosystems.Boston: Kluwer Academic

Publishers

[25] Menezes A,Okamoto T, Vanstone S.1993. Reducing elliptic curve logarithms to logarithms

in a finite field.IEEE Transactions on Information Theory, 39:1639-1646

[26] Müller V.1995. Counting the number of points on elliptic curves over finite fields of

characteristic greater than three:[Doctorate Dissertation].Saarlandes: University of

Saarlandes

[27] Pollard J.1978. Monte Carlo methods for index computation mod p. Mathematics of

Computation, 32:918-924

[28] Satoh T,Araki K.1998. Fermat quotients and the polynomial time discrete log algorithm for

anomalous elliptic curves.Comment.Math.Univ.St.Paul.,47(1):81-92

[29] Satoh T.2000. The canonical lift of an ordinary elliptic curve over a finite fields and its point

counting. J.Ramanuijan Math.Soc.,15:247-270

[30] Satoh T. 2002. On p-adic point counting algorithms for elliptic curves over finite fields.

In:Fieker C,Kohel D R,eds. Algorithmic Number Theory,LNCS 2369, Berlin:

Springer-Verlag,43-66

56

[31] Satoh T,Skjernaa B ,Taguchi Y.2003. Fast computation of canonical lifts of elliptic curves

and its application to point counting. Finite Fields Appl.,9:89~101

[32] Schoof R.1985. Elliptic curves over finite fields and the computation of square roots mod

p.Mathematics of Computation, 44(170):483~494

[33] Schoof R.1995. Counting Points on Elliptic Curves over Finite Fields. Jl. de Theorie des

Nombres de Bordeaux, 7:219~254

[34] Silverman J.1986. The Arithmetic of Elliptic Curves. Berlin: Springer-Verlag , GTM 106

[35] Smart N.1999. The discrete logarithm problem on elliptic curves of trace one. Journal of

Cryptology,12(3):193~196

[36] ГОСТ Р 34.10-2001 ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ—КРИПТОГРАФИЧЕСКАЯ

ЗАЩИТА ИНФОРМАЦИИ—Процессы формирования и провepки элeктронной

цифровoй подписи. ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССТИЙСКОЙ ФЕДЕРАЦИИ

